Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_ashikhmin_velvet.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3d7906eef7dcdb29f478cb91a7d91c66be4580ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* SPDX-License-Identifier: BSD-3-Clause
 *
 * Adapted from Open Shading Language
 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
 * All Rights Reserved.
 *
 * Modifications Copyright 2011-2022 Blender Foundation. */

#pragma once

#include "kernel/sample/mapping.h"

CCL_NAMESPACE_BEGIN

typedef struct VelvetBsdf {
  SHADER_CLOSURE_BASE;

  float sigma;
  float invsigma2;
} VelvetBsdf;

static_assert(sizeof(ShaderClosure) >= sizeof(VelvetBsdf), "VelvetBsdf is too large!");

ccl_device int bsdf_ashikhmin_velvet_setup(ccl_private VelvetBsdf *bsdf)
{
  float sigma = fmaxf(bsdf->sigma, 0.01f);
  bsdf->invsigma2 = 1.0f / (sigma * sigma);

  bsdf->type = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;

  return SD_BSDF | SD_BSDF_HAS_EVAL;
}

ccl_device float3 bsdf_ashikhmin_velvet_eval_reflect(ccl_private const ShaderClosure *sc,
                                                     const float3 I,
                                                     const float3 omega_in,
                                                     ccl_private float *pdf)
{
  ccl_private const VelvetBsdf *bsdf = (ccl_private const VelvetBsdf *)sc;
  float m_invsigma2 = bsdf->invsigma2;
  float3 N = bsdf->N;

  float cosNO = dot(N, I);
  float cosNI = dot(N, omega_in);
  if (cosNO > 0 && cosNI > 0) {
    float3 H = normalize(omega_in + I);

    float cosNH = dot(N, H);
    float cosHO = fabsf(dot(I, H));

    if (!(fabsf(cosNH) < 1.0f - 1e-5f && cosHO > 1e-5f)) {
      *pdf = 0.0f;
      return make_float3(0.0f, 0.0f, 0.0f);
    }
    float cosNHdivHO = cosNH / cosHO;
    cosNHdivHO = fmaxf(cosNHdivHO, 1e-5f);

    float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
    float fac2 = 2 * fabsf(cosNHdivHO * cosNI);

    float sinNH2 = 1 - cosNH * cosNH;
    float sinNH4 = sinNH2 * sinNH2;
    float cotangent2 = (cosNH * cosNH) / sinNH2;

    float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * M_1_PI_F / sinNH4;
    float G = fminf(1.0f, fminf(fac1, fac2));  // TODO: derive G from D analytically

    float out = 0.25f * (D * G) / cosNO;

    *pdf = 0.5f * M_1_PI_F;
    return make_float3(out, out, out);
  }

  *pdf = 0.0f;
  return make_float3(0.0f, 0.0f, 0.0f);
}

ccl_device float3 bsdf_ashikhmin_velvet_eval_transmit(ccl_private const ShaderClosure *sc,
                                                      const float3 I,
                                                      const float3 omega_in,
                                                      ccl_private float *pdf)
{
  *pdf = 0.0f;
  return make_float3(0.0f, 0.0f, 0.0f);
}

ccl_device int bsdf_ashikhmin_velvet_sample(ccl_private const ShaderClosure *sc,
                                            float3 Ng,
                                            float3 I,
                                            float3 dIdx,
                                            float3 dIdy,
                                            float randu,
                                            float randv,
                                            ccl_private float3 *eval,
                                            ccl_private float3 *omega_in,
                                            ccl_private float3 *domega_in_dx,
                                            ccl_private float3 *domega_in_dy,
                                            ccl_private float *pdf)
{
  ccl_private const VelvetBsdf *bsdf = (ccl_private const VelvetBsdf *)sc;
  float m_invsigma2 = bsdf->invsigma2;
  float3 N = bsdf->N;

  // we are viewing the surface from above - send a ray out with uniform
  // distribution over the hemisphere
  sample_uniform_hemisphere(N, randu, randv, omega_in, pdf);

  if (dot(Ng, *omega_in) > 0) {
    float3 H = normalize(*omega_in + I);

    float cosNI = dot(N, *omega_in);
    float cosNO = dot(N, I);
    float cosNH = dot(N, H);
    float cosHO = fabsf(dot(I, H));

    if (fabsf(cosNO) > 1e-5f && fabsf(cosNH) < 1.0f - 1e-5f && cosHO > 1e-5f) {
      float cosNHdivHO = cosNH / cosHO;
      cosNHdivHO = fmaxf(cosNHdivHO, 1e-5f);

      float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
      float fac2 = 2 * fabsf(cosNHdivHO * cosNI);

      float sinNH2 = 1 - cosNH * cosNH;
      float sinNH4 = sinNH2 * sinNH2;
      float cotangent2 = (cosNH * cosNH) / sinNH2;

      float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * M_1_PI_F / sinNH4;
      float G = fminf(1.0f, fminf(fac1, fac2));  // TODO: derive G from D analytically

      float power = 0.25f * (D * G) / cosNO;

      *eval = make_float3(power, power, power);

#ifdef __RAY_DIFFERENTIALS__
      // TODO: find a better approximation for the retroreflective bounce
      *domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
      *domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
#endif
    }
    else {
      *pdf = 0.0f;
      *eval = make_float3(0.0f, 0.0f, 0.0f);
    }
  }
  else {
    *pdf = 0.0f;
    *eval = make_float3(0.0f, 0.0f, 0.0f);
  }
  return LABEL_REFLECT | LABEL_DIFFUSE;
}

CCL_NAMESPACE_END