Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_microfacet.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b159f585831000e129acb68005ddb7e336d2eda3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * Adapted from Open Shading Language with this license:
 *
 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
 * All Rights Reserved.
 *
 * Modifications Copyright 2011, Blender Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * * Neither the name of Sony Pictures Imageworks nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __BSDF_MICROFACET_H__
#define __BSDF_MICROFACET_H__

CCL_NAMESPACE_BEGIN

/* GGX */

__device int bsdf_microfacet_ggx_setup(ShaderClosure *sc)
{
	sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* m_ag */
	
	sc->type = CLOSURE_BSDF_MICROFACET_GGX_ID;

	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}

__device int bsdf_microfacet_ggx_refraction_setup(ShaderClosure *sc)
{
	sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* m_ag */

	sc->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;

	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}

__device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness)
{
	sc->data0 = fmaxf(roughness, sc->data0); /* m_ag */
}

__device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	float m_ag = max(sc->data0, 1e-4f);
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
	float3 N = sc->N;

	if(m_refractive || m_ag <= 1e-4f)
		return make_float3 (0, 0, 0);
	float cosNO = dot(N, I);
	float cosNI = dot(N, omega_in);
	if(cosNI > 0 && cosNO > 0) {
		// get half vector
		float3 Hr = normalize(omega_in + I);
		// eq. 20: (F*G*D)/(4*in*on)
		// eq. 33: first we calculate D(m) with m=Hr:
		float alpha2 = m_ag * m_ag;
		float cosThetaM = dot(N, Hr);
		float cosThetaM2 = cosThetaM * cosThetaM;
		float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
		float cosThetaM4 = cosThetaM2 * cosThetaM2;
		float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
		// eq. 34: now calculate G1(i,m) and G1(o,m)
		float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
		float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); 
		float G = G1o * G1i;
		float out = (G * D) * 0.25f / cosNO;
		// eq. 24
		float pm = D * cosThetaM;
		// convert into pdf of the sampled direction
		// eq. 38 - but see also:
		// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
		*pdf = pm * 0.25f / dot(Hr, I);
		return make_float3 (out, out, out);
	}
	return make_float3 (0, 0, 0);
}

__device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	float m_ag = max(sc->data0, 1e-4f);
	float m_eta = sc->data1;
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
	float3 N = sc->N;

	if(!m_refractive || m_ag <= 1e-4f)
		return make_float3 (0, 0, 0);
	float cosNO = dot(N, I);
	float cosNI = dot(N, omega_in);
	if(cosNO <= 0 || cosNI >= 0)
		return make_float3 (0, 0, 0); // vectors on same side -- not possible
	// compute half-vector of the refraction (eq. 16)
	float3 ht = -(m_eta * omega_in + I);
	float3 Ht = normalize(ht);
	float cosHO = dot(Ht, I);

	float cosHI = dot(Ht, omega_in);
	// eq. 33: first we calculate D(m) with m=Ht:
	float alpha2 = m_ag * m_ag;
	float cosThetaM = dot(N, Ht);
	float cosThetaM2 = cosThetaM * cosThetaM;
	float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
	float cosThetaM4 = cosThetaM2 * cosThetaM2;
	float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
	// eq. 34: now calculate G1(i,m) and G1(o,m)
	float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
	float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); 
	float G = G1o * G1i;
	// probability
	float invHt2 = 1 / dot(ht, ht);
	*pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
	float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
	return make_float3 (out, out, out);
}

__device int bsdf_microfacet_ggx_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
	float m_ag = sc->data0;
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
	float3 N = sc->N;

	float cosNO = dot(N, I);
	if(cosNO > 0) {
		float3 X, Y, Z = N;
		make_orthonormals(Z, &X, &Y);
		// generate a random microfacet normal m
		// eq. 35,36:
		// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
		//tttt  and sin(atan(x)) == x/sqrt(1+x^2)
		float alpha2 = m_ag * m_ag;
		float tanThetaM2 = alpha2 * randu / (1 - randu);
		float cosThetaM  = 1 / safe_sqrtf(1 + tanThetaM2);
		float sinThetaM  = cosThetaM * safe_sqrtf(tanThetaM2);
		float phiM = M_2PI_F * randv;
		float3 m = (cosf(phiM) * sinThetaM) * X +
				 (sinf(phiM) * sinThetaM) * Y +
							   cosThetaM  * Z;
		if(!m_refractive) {
			float cosMO = dot(m, I);
			if(cosMO > 0) {
				// eq. 39 - compute actual reflected direction
				*omega_in = 2 * cosMO * m - I;
				if(dot(Ng, *omega_in) > 0) {
					if (m_ag <= 1e-4f) {
						// some high number for MIS
						*pdf = 1e6f;
						*eval = make_float3(1e6f, 1e6f, 1e6f);
					}
					else {
						// microfacet normal is visible to this ray
						// eq. 33
						float cosThetaM2 = cosThetaM * cosThetaM;
						float cosThetaM4 = cosThetaM2 * cosThetaM2;
						float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
						// eq. 24
						float pm = D * cosThetaM;
						// convert into pdf of the sampled direction
						// eq. 38 - but see also:
						// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
						*pdf = pm * 0.25f / cosMO;
						// eval BRDF*cosNI
						float cosNI = dot(N, *omega_in);
						// eq. 34: now calculate G1(i,m) and G1(o,m)
						float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
						float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); 
						float G = G1o * G1i;
						// eq. 20: (F*G*D)/(4*in*on)
						float out = (G * D) * 0.25f / cosNO;
						*eval = make_float3(out, out, out);
					}

#ifdef __RAY_DIFFERENTIALS__
					*domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
					*domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
				}
			}
		}
		else {
			// CAUTION: the i and o variables are inverted relative to the paper
			// eq. 39 - compute actual refractive direction
			float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
			float3 dRdx, dRdy, dTdx, dTdy;
#endif
			float m_eta = sc->data1;
			bool inside;
			fresnel_dielectric(m_eta, m, I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
				dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
				&inside);
			
			if(!inside) {
				*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
				*domega_in_dx = dTdx;
				*domega_in_dy = dTdy;
#endif

				if (m_ag <= 1e-4f) {
					// some high number for MIS
					*pdf = 1e6f;
					*eval = make_float3(1e6f, 1e6f, 1e6f);
				}
				else {
					// eq. 33
					float cosThetaM2 = cosThetaM * cosThetaM;
					float cosThetaM4 = cosThetaM2 * cosThetaM2;
					float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
					// eq. 24
					float pm = D * cosThetaM;
					// eval BRDF*cosNI
					float cosNI = dot(N, *omega_in);
					// eq. 34: now calculate G1(i,m) and G1(o,m)
					float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
					float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); 
					float G = G1o * G1i;
					// eq. 21
					float cosHI = dot(m, *omega_in);
					float cosHO = dot(m, I);
					float Ht2 = m_eta * cosHI + cosHO;
					Ht2 *= Ht2;
					float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
					// eq. 38 and eq. 17
					*pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
					*eval = make_float3(out, out, out);
				}
			}
		}
	}
	return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}

/* BECKMANN */

__device int bsdf_microfacet_beckmann_setup(ShaderClosure *sc)
{
	sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* m_ab */

	sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}

__device int bsdf_microfacet_beckmann_refraction_setup(ShaderClosure *sc)
{
	sc->data0 = clamp(sc->data0, 0.0f, 1.0f); /* m_ab */

	sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}

__device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness)
{
	sc->data0 = fmaxf(roughness, sc->data0); /* m_ab */
}

__device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	float m_ab = max(sc->data0, 1e-4f);
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
	float3 N = sc->N;

	if(m_refractive || m_ab <= 1e-4f)
		return make_float3 (0, 0, 0);
	float cosNO = dot(N, I);
	float cosNI = dot(N, omega_in);
	if(cosNO > 0 && cosNI > 0) {
	   // get half vector
	   float3 Hr = normalize(omega_in + I);
	   // eq. 20: (F*G*D)/(4*in*on)
	   // eq. 25: first we calculate D(m) with m=Hr:
	   float alpha2 = m_ab * m_ab;
	   float cosThetaM = dot(N, Hr);
	   float cosThetaM2 = cosThetaM * cosThetaM;
	   float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
	   float cosThetaM4 = cosThetaM2 * cosThetaM2;
	   float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 *  cosThetaM4);
	   // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
	   float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
	   float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
	   float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
	   float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
	   float G = G1o * G1i;
	   float out = (G * D) * 0.25f / cosNO;
	   // eq. 24
	   float pm = D * cosThetaM;
	   // convert into pdf of the sampled direction
	   // eq. 38 - but see also:
	   // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
	   *pdf = pm * 0.25f / dot(Hr, I);
	   return make_float3 (out, out, out);
	}
	return make_float3 (0, 0, 0);
}

__device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	float m_ab = max(sc->data0, 1e-4f);
	float m_eta = sc->data1;
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
	float3 N = sc->N;

	if(!m_refractive || m_ab <= 1e-4f)
		return make_float3 (0, 0, 0);
	float cosNO = dot(N, I);
	float cosNI = dot(N, omega_in);
	if(cosNO <= 0 || cosNI >= 0)
		return make_float3 (0, 0, 0);
	// compute half-vector of the refraction (eq. 16)
	float3 ht = -(m_eta * omega_in + I);
	float3 Ht = normalize(ht);
	float cosHO = dot(Ht, I);

	float cosHI = dot(Ht, omega_in);
	// eq. 33: first we calculate D(m) with m=Ht:
	float alpha2 = m_ab * m_ab;
	float cosThetaM = min(dot(N, Ht), 1.0f);
	float cosThetaM2 = cosThetaM * cosThetaM;
	float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
	float cosThetaM4 = cosThetaM2 * cosThetaM2;
	float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 *  cosThetaM4);
	// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
	float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
	float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
	float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
	float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
	float G = G1o * G1i;
	// probability
	float invHt2 = 1 / dot(ht, ht);
	*pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
	float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
	return make_float3 (out, out, out);
}

__device int bsdf_microfacet_beckmann_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
	float m_ab = sc->data0;
	int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
	float3 N = sc->N;

	float cosNO = dot(N, I);
	if(cosNO > 0) {
		float3 X, Y, Z = N;
		make_orthonormals(Z, &X, &Y);
		// generate a random microfacet normal m
		// eq. 35,36:
		// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
		//tttt  and sin(atan(x)) == x/sqrt(1+x^2)
		float alpha2 = m_ab * m_ab;
		float tanThetaM, cosThetaM;

		if(alpha2 == 0.0f) {
			tanThetaM = 0.0f;
			cosThetaM = 1.0f;
		}
		else {
			tanThetaM = safe_sqrtf(-alpha2 * logf(1 - randu));
			cosThetaM = 1 / safe_sqrtf(1 + tanThetaM * tanThetaM);
		}

		float sinThetaM = cosThetaM * tanThetaM;
		float phiM = M_2PI_F * randv;
		float3 m = (cosf(phiM) * sinThetaM) * X +
				 (sinf(phiM) * sinThetaM) * Y +
							   cosThetaM  * Z;

		if(!m_refractive) {
			float cosMO = dot(m, I);
			if(cosMO > 0) {
				// eq. 39 - compute actual reflected direction
				*omega_in = 2 * cosMO * m - I;
				if(dot(Ng, *omega_in) > 0) {
					if (m_ab <= 1e-4f) {
						// some high number for MIS
						*pdf = 1e6f;
						*eval = make_float3(1e6f, 1e6f, 1e6f);
					}
					else {
						// microfacet normal is visible to this ray
						// eq. 25
						float cosThetaM2 = cosThetaM * cosThetaM;
						float tanThetaM2 = tanThetaM * tanThetaM;
						float cosThetaM4 = cosThetaM2 * cosThetaM2;
						float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 *  cosThetaM4);
						// eq. 24
						float pm = D * cosThetaM;
						// convert into pdf of the sampled direction
						// eq. 38 - but see also:
						// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
						*pdf = pm * 0.25f / cosMO;
						// Eval BRDF*cosNI
						float cosNI = dot(N, *omega_in);
						// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
						float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
						float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
						float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
						float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
						float G = G1o * G1i;
						// eq. 20: (F*G*D)/(4*in*on)
						float out = (G * D) * 0.25f / cosNO;
						*eval = make_float3(out, out, out);
					}
#ifdef __RAY_DIFFERENTIALS__
					*domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
					*domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
				}
			}
		}
		else {
			// CAUTION: the i and o variables are inverted relative to the paper
			// eq. 39 - compute actual refractive direction
			float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
			float3 dRdx, dRdy, dTdx, dTdy;
#endif
			float m_eta = sc->data1;
			bool inside;
			fresnel_dielectric(m_eta, m, I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
				dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
				&inside);

			if(!inside) {
				*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
				*domega_in_dx = dTdx;
				*domega_in_dy = dTdy;
#endif
				if (m_ab <= 1e-4f) {
					// some high number for MIS
					*pdf = 1e6f;
					*eval = make_float3(1e6f, 1e6f, 1e6f);
				}
				else {
					// eq. 33
					float cosThetaM2 = cosThetaM * cosThetaM;
					float tanThetaM2 = tanThetaM * tanThetaM;
					float cosThetaM4 = cosThetaM2 * cosThetaM2;
					float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 *  cosThetaM4);
					// eq. 24
					float pm = D * cosThetaM;
					// eval BRDF*cosNI
					float cosNI = dot(N, *omega_in);
					// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
					float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
					float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
					float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
					float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
					float G = G1o * G1i;
					// eq. 21
					float cosHI = dot(m, *omega_in);
					float cosHO = dot(m, I);
					float Ht2 = m_eta * cosHI + cosHO;
					Ht2 *= Ht2;
					float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
					// eq. 38 and eq. 17
					*pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
					*eval = make_float3(out, out, out);
				}
			}
		}
	}
	return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}

CCL_NAMESPACE_END

#endif /* __BSDF_MICROFACET_H__ */