Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_microfacet_multi.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 57f1e733ee7911548542f81aac0957305ac4a878 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
 * Copyright 2011-2016 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Most of the code is based on the supplemental implementations from https://eheitzresearch.wordpress.com/240-2/. */

/* === GGX Microfacet distribution functions === */

/* Isotropic GGX microfacet distribution */
ccl_device_forceinline float D_ggx(float3 wm, float alpha)
{
	wm.z *= wm.z;
	alpha *= alpha;
	float tmp = (1.0f - wm.z) + alpha * wm.z;
	return alpha / max(M_PI_F * tmp*tmp, 1e-7f);
}

/* Anisotropic GGX microfacet distribution */
ccl_device_forceinline float D_ggx_aniso(const float3 wm, const float2 alpha)
{
	float slope_x = -wm.x/alpha.x;
	float slope_y = -wm.y/alpha.y;
	float tmp = wm.z*wm.z + slope_x*slope_x + slope_y*slope_y;

	return 1.0f / max(M_PI_F * tmp*tmp * alpha.x*alpha.y, 1e-7f);
}

/* Sample slope distribution (based on page 14 of the supplemental implementation). */
ccl_device_forceinline float2 mf_sampleP22_11(const float cosI, const float2 randU)
{
	if(cosI > 0.9999f || cosI < 1e-6f) {
		const float r = sqrtf(randU.x / max(1.0f - randU.x, 1e-7f));
		const float phi = M_2PI_F * randU.y;
		return make_float2(r*cosf(phi), r*sinf(phi));
	}

	const float sinI = sqrtf(1.0f - cosI*cosI);
	const float tanI = sinI/cosI;
	const float projA = 0.5f * (cosI + 1.0f);
	if(projA < 0.0001f)
		return make_float2(0.0f, 0.0f);
	const float A = 2.0f*randU.x*projA / cosI - 1.0f;
	float tmp = A*A-1.0f;
	if(fabsf(tmp) < 1e-7f)
		return make_float2(0.0f, 0.0f);
	tmp = 1.0f / tmp;
	const float D = safe_sqrtf(tanI*tanI*tmp*tmp - (A*A-tanI*tanI)*tmp);

	const float slopeX2 = tanI*tmp + D;
	const float slopeX = (A < 0.0f || slopeX2 > 1.0f/tanI)? (tanI*tmp - D) : slopeX2;

	float U2;
	if(randU.y >= 0.5f)
		U2 = 2.0f*(randU.y - 0.5f);
	else
		U2 = 2.0f*(0.5f - randU.y);
	const float z = (U2*(U2*(U2*0.27385f-0.73369f)+0.46341f)) / (U2*(U2*(U2*0.093073f+0.309420f)-1.0f)+0.597999f);
	const float slopeY = z * sqrtf(1.0f + slopeX*slopeX);

	if(randU.y >= 0.5f)
		return make_float2(slopeX, slopeY);
	else
		return make_float2(slopeX, -slopeY);
}

/* Visible normal sampling for the GGX distribution (based on page 7 of the supplemental implementation). */
ccl_device_forceinline float3 mf_sample_vndf(const float3 wi, const float2 alpha, const float2 randU)
{
	const float3 wi_11 = normalize(make_float3(alpha.x*wi.x, alpha.y*wi.y, wi.z));
	const float2 slope_11 = mf_sampleP22_11(wi_11.z, randU);

	const float3 cossin_phi = safe_normalize(make_float3(wi_11.x, wi_11.y, 0.0f));
	const float slope_x = alpha.x*(cossin_phi.x * slope_11.x - cossin_phi.y * slope_11.y);
	const float slope_y = alpha.y*(cossin_phi.y * slope_11.x + cossin_phi.x * slope_11.y);

	kernel_assert(isfinite(slope_x));
	return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}

/* === Phase functions: Glossy, Diffuse and Glass === */

/* Phase function for reflective materials, either without a fresnel term (for compatibility) or with the conductive fresnel term. */
ccl_device_forceinline float3 mf_sample_phase_glossy(const float3 wi, float3 *n, float3 *k, float3 *weight, const float3 wm)
{
	if(n && k)
		*weight *= fresnel_conductor(dot(wi, wm), *n, *k);

	return -wi + 2.0f * wm * dot(wi, wm);
}

ccl_device_forceinline float3 mf_eval_phase_glossy(const float3 w, const float lambda, const float3 wo, const float2 alpha, float3 *n, float3 *k)
{
	if(w.z > 0.9999f)
		return make_float3(0.0f, 0.0f, 0.0f);

	const float3 wh = normalize(wo - w);
	if(wh.z < 0.0f)
		return make_float3(0.0f, 0.0f, 0.0f);

	float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;

	const float dotW_WH = dot(-w, wh);
	if(dotW_WH < 0.0f)
		return make_float3(0.0f, 0.0f, 0.0f);

	float phase = max(0.0f, dotW_WH) * 0.25f / max(pArea * dotW_WH, 1e-7f);
	if(alpha.x == alpha.y)
		phase *= D_ggx(wh, alpha.x);
	else
		phase *= D_ggx_aniso(wh, alpha);

	if(n && k) {
		/* Apply conductive fresnel term. */
		return phase * fresnel_conductor(dotW_WH, *n, *k);
	}

	return make_float3(phase, phase, phase);
}

/* Phase function for rough lambertian diffuse surfaces. */
ccl_device_forceinline float3 mf_sample_phase_diffuse(const float3 wm, const float randu, const float randv)
{
	float3 tm, bm;
	make_orthonormals(wm, &tm, &bm);

	float2 disk = concentric_sample_disk(randu, randv);
	return disk.x*tm + disk.y*bm + safe_sqrtf(1.0f - disk.x*disk.x - disk.y*disk.y)*wm;
}

ccl_device_forceinline float3 mf_eval_phase_diffuse(const float3 w, const float3 wm)
{
	const float v = max(0.0f, dot(w, wm)) * M_1_PI_F;
	return make_float3(v, v, v);
}

/* Phase function for dielectric transmissive materials, including both reflection and refraction according to the dielectric fresnel term. */
ccl_device_forceinline float3 mf_sample_phase_glass(const float3 wi, const float eta, const float3 wm, const float randV, bool *outside)
{
	float cosI = dot(wi, wm);
	float f = fresnel_dielectric_cos(cosI, eta);
	if(randV < f) {
		*outside = true;
		return -wi + 2.0f * wm * cosI;
	}
	*outside = false;
	float inv_eta = 1.0f/eta;
	float cosT = -safe_sqrtf(1.0f - (1.0f - cosI*cosI) * inv_eta*inv_eta);
	return normalize(wm*(cosI*inv_eta + cosT) - wi*inv_eta);
}

ccl_device_forceinline float3 mf_eval_phase_glass(const float3 w, const float lambda, const float3 wo, const bool wo_outside, const float2 alpha, const float eta)
{
	if(w.z > 0.9999f)
		return make_float3(0.0f, 0.0f, 0.0f);

	float pArea = (w.z < -0.9999f)? 1.0f: lambda*w.z;
	float v;
	if(wo_outside) {
		const float3 wh = normalize(wo - w);
		if(wh.z < 0.0f)
			return make_float3(0.0f, 0.0f, 0.0f);

		const float dotW_WH = dot(-w, wh);
		v = fresnel_dielectric_cos(dotW_WH, eta) * max(0.0f, dotW_WH) * D_ggx(wh, alpha.x) * 0.25f / (pArea * dotW_WH);
	}
	else {
		float3 wh = normalize(wo*eta - w);
		if(wh.z < 0.0f)
			wh = -wh;
		const float dotW_WH = dot(-w, wh), dotWO_WH = dot(wo, wh);
		if(dotW_WH < 0.0f)
			return make_float3(0.0f, 0.0f, 0.0f);

		float temp = dotW_WH + eta*dotWO_WH;
		v = (1.0f - fresnel_dielectric_cos(dotW_WH, eta)) * max(0.0f, dotW_WH) * max(0.0f, -dotWO_WH) * D_ggx(wh, alpha.x) / (pArea * temp * temp);
	}

	return make_float3(v, v, v);
}

/* === Utility functions for the random walks === */

/* Smith Lambda function for GGX (based on page 12 of the supplemental implementation). */
ccl_device_forceinline float mf_lambda(const float3 w, const float2 alpha)
{
	if(w.z > 0.9999f)
		return 0.0f;
	else if(w.z < -0.9999f)
		return -0.9999f;

	const float inv_wz2 = 1.0f / max(w.z*w.z, 1e-7f);
	const float2 wa = make_float2(w.x, w.y)*alpha;
	float v = sqrtf(1.0f + dot(wa, wa) * inv_wz2);
	if(w.z <= 0.0f)
		v = -v;

	return 0.5f*(v - 1.0f);
}

/* Height distribution CDF (based on page 4 of the supplemental implementation). */
ccl_device_forceinline float mf_invC1(const float h)
{
	return 2.0f * saturate(h) - 1.0f;
}

ccl_device_forceinline float mf_C1(const float h)
{
	return saturate(0.5f * (h + 1.0f));
}

/* Masking function (based on page 16 of the supplemental implementation). */
ccl_device_forceinline float mf_G1(const float3 w, const float C1, const float lambda)
{
	if(w.z > 0.9999f)
		return 1.0f;
	if(w.z < 1e-5f)
		return 0.0f;
	return powf(C1, lambda);
}

/* Sampling from the visible height distribution (based on page 17 of the supplemental implementation). */
ccl_device_forceinline bool mf_sample_height(const float3 w, float *h, float *C1, float *G1, float *lambda, const float U)
{
	if(w.z > 0.9999f)
		return false;
	if(w.z < -0.9999f) {
		*C1 *= U;
		*h = mf_invC1(*C1);
		*G1 = mf_G1(w, *C1, *lambda);
	}
	else if(fabsf(w.z) >= 0.0001f) {
		if(U > 1.0f - *G1)
			return false;
		if(*lambda >= 0.0f) {
			*C1 = 1.0f;
		}
		else {
			*C1 *= powf(1.0f-U, -1.0f / *lambda);
		}
		*h = mf_invC1(*C1);
		*G1 = mf_G1(w, *C1, *lambda);
	}
	return true;
}

/* === PDF approximations for the different phase functions. ===
 * As explained in bsdf_microfacet_multi_impl.h, using approximations with MIS still produces an unbiased result. */

/* Approximation for the albedo of the single-scattering GGX distribution,
 * the missing energy is then approximated as a diffuse reflection for the PDF. */
ccl_device_forceinline float mf_ggx_albedo(float r)
{
	float albedo = 0.806495f*expf(-1.98712f*r*r) + 0.199531f;
	albedo -= ((((((1.76741f*r - 8.43891f)*r + 15.784f)*r - 14.398f)*r + 6.45221f)*r - 1.19722f)*r + 0.027803f)*r + 0.00568739f;
	return saturate(albedo);
}

ccl_device_forceinline float mf_ggx_pdf(const float3 wi, const float3 wo, const float alpha)
{
	float D = D_ggx(normalize(wi+wo), alpha);
	float lambda = mf_lambda(wi, make_float2(alpha, alpha));
	float albedo = mf_ggx_albedo(alpha);
	return 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f) + (1.0f - albedo) * wo.z;
}

ccl_device_forceinline float mf_ggx_aniso_pdf(const float3 wi, const float3 wo, const float2 alpha)
{
	return 0.25f * D_ggx_aniso(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, alpha)) * wi.z) + (1.0f - mf_ggx_albedo(sqrtf(alpha.x*alpha.y))) * wo.z;
}

ccl_device_forceinline float mf_diffuse_pdf(const float3 wo)
{
	return M_1_PI_F * wo.z;
}

ccl_device_forceinline float mf_glass_pdf(const float3 wi, const float3 wo, const float alpha, const float eta)
{
	float3 wh;
	float fresnel;
	if(wi.z*wo.z > 0.0f) {
		wh = normalize(wi + wo);
		fresnel = fresnel_dielectric_cos(dot(wi, wh), eta);
	}
	else {
		wh = normalize(wi + wo*eta);
		fresnel = 1.0f - fresnel_dielectric_cos(dot(wi, wh), eta);
	}
	if(wh.z < 0.0f)
		wh = -wh;
	float3 r_wi = (wi.z < 0.0f)? -wi: wi;
	return fresnel * max(0.0f, dot(r_wi, wh)) * D_ggx(wh, alpha) / ((1.0f + mf_lambda(r_wi, make_float2(alpha, alpha))) * r_wi.z) + fabsf(wo.z);
}

/* === Actual random walk implementations, one version of mf_eval and mf_sample per phase function. === */

#define MF_NAME_JOIN(x,y) x ## _ ## y
#define MF_NAME_EVAL(x,y) MF_NAME_JOIN(x,y)
#define MF_FUNCTION_FULL_NAME(prefix) MF_NAME_EVAL(prefix, MF_PHASE_FUNCTION)

#define MF_PHASE_FUNCTION glass
#define MF_MULTI_GLASS
#include "kernel/closure/bsdf_microfacet_multi_impl.h"

/* The diffuse phase function is not implemented as a node yet. */
#if 0
#define MF_PHASE_FUNCTION diffuse
#define MF_MULTI_DIFFUSE
#include "kernel/closure/bsdf_microfacet_multi_impl.h"
#endif

#define MF_PHASE_FUNCTION glossy
#define MF_MULTI_GLOSSY
#include "kernel/closure/bsdf_microfacet_multi_impl.h"

ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
{
	MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;

	bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
	bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}

/* === Closure implementations === */

/* Multiscattering GGX Glossy closure */

ccl_device int bsdf_microfacet_multi_ggx_common_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
	bsdf->alpha_y = clamp(bsdf->alpha_y, 1e-4f, 1.0f);
	bsdf->extra->color.x = saturate(bsdf->extra->color.x);
	bsdf->extra->color.y = saturate(bsdf->extra->color.y);
	bsdf->extra->color.z = saturate(bsdf->extra->color.z);
	bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
	bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
	bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);

	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}

ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(MicrofacetBsdf *bsdf)
{
	if(is_zero(bsdf->T))
		bsdf->T = make_float3(1.0f, 0.0f, 0.0f);

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;

	return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}

ccl_device int bsdf_microfacet_multi_ggx_aniso_fresnel_setup(MicrofacetBsdf *bsdf)
{
	if(is_zero(bsdf->T))
		bsdf->T = make_float3(1.0f, 0.0f, 0.0f);

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;

	return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}

ccl_device int bsdf_microfacet_multi_ggx_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_y = bsdf->alpha_x;

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;

	return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}

ccl_device int bsdf_microfacet_multi_ggx_fresnel_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_y = bsdf->alpha_x;

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;

	return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}

ccl_device int bsdf_microfacet_multi_ggx_refraction_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_y = bsdf->alpha_x;

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;

	return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}

ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
	*pdf = 0.0f;
	return make_float3(0.0f, 0.0f, 0.0f);
}

ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
	const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;

	if(bsdf->alpha_x*bsdf->alpha_y < 1e-7f) {
		return make_float3(0.0f, 0.0f, 0.0f);
	}

	bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);

	bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
	float3 X, Y, Z;
	Z = bsdf->N;
	if(is_aniso)
		make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
	else
		make_orthonormals(Z, &X, &Y);

	float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
	float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));

	if(is_aniso)
		*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
	else
		*pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
	return mf_eval_glossy(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
}

ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
{
	const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;

	float3 X, Y, Z;
	Z = bsdf->N;

	if(bsdf->alpha_x*bsdf->alpha_y < 1e-7f) {
		*omega_in = 2*dot(Z, I)*Z - I;
		*pdf = 1e6f;
		*eval = make_float3(1e6f, 1e6f, 1e6f);
		return LABEL_REFLECT|LABEL_SINGULAR;
	}

	bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);

	bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
	if(is_aniso)
		make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
	else
		make_orthonormals(Z, &X, &Y);

	float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
	float3 localO;

	*eval = mf_sample_glossy(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
	if(is_aniso)
		*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
	else
		*pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
	*eval *= *pdf;

	*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
#ifdef __RAY_DIFFERENTIALS__
	*domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
	*domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
#endif
	return LABEL_REFLECT|LABEL_GLOSSY;
}

/* Multiscattering GGX Glass closure */

ccl_device int bsdf_microfacet_multi_ggx_glass_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
	bsdf->alpha_y = bsdf->alpha_x;
	bsdf->ior = max(0.0f, bsdf->ior);
	bsdf->extra->color.x = saturate(bsdf->extra->color.x);
	bsdf->extra->color.y = saturate(bsdf->extra->color.y);
	bsdf->extra->color.z = saturate(bsdf->extra->color.z);

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;

	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}

ccl_device int bsdf_microfacet_multi_ggx_glass_fresnel_setup(MicrofacetBsdf *bsdf)
{
	bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
	bsdf->alpha_y = bsdf->alpha_x;
	bsdf->ior = max(0.0f, bsdf->ior);
	bsdf->extra->color.x = saturate(bsdf->extra->color.x);
	bsdf->extra->color.y = saturate(bsdf->extra->color.y);
	bsdf->extra->color.z = saturate(bsdf->extra->color.z);
	bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
	bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
	bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);

	bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID;

	return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}

ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
	const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;

	if(bsdf->alpha_x*bsdf->alpha_y < 1e-7f) {
		return make_float3(0.0f, 0.0f, 0.0f);
	}

	float3 X, Y, Z;
	Z = bsdf->N;
	make_orthonormals(Z, &X, &Y);

	float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
	float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));

	*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
	return mf_eval_glass(localI, localO, false, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, false, bsdf->extra->color);
}

ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
	const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;

	if(bsdf->alpha_x*bsdf->alpha_y < 1e-7f) {
		return make_float3(0.0f, 0.0f, 0.0f);
	}

	bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);

	float3 X, Y, Z;
	Z = bsdf->N;
	make_orthonormals(Z, &X, &Y);

	float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
	float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));

	*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
	return mf_eval_glass(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
}

ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
{
	const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;

	float3 X, Y, Z;
	Z = bsdf->N;

	if(bsdf->alpha_x*bsdf->alpha_y < 1e-7f) {
		float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
		float3 dRdx, dRdy, dTdx, dTdy;
#endif
		bool inside;
		float fresnel = fresnel_dielectric(bsdf->ior, Z, I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
		                dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
		                &inside);

		*pdf = 1e6f;
		*eval = make_float3(1e6f, 1e6f, 1e6f);
		if(randu < fresnel) {
			*omega_in = R;
#ifdef __RAY_DIFFERENTIALS__
			*domega_in_dx = dRdx;
			*domega_in_dy = dRdy;
#endif
			return LABEL_REFLECT|LABEL_SINGULAR;
		}
		else {
			*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
			*domega_in_dx = dTdx;
			*domega_in_dy = dTdy;
#endif
			return LABEL_TRANSMIT|LABEL_SINGULAR;
		}
	}

	bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);

	make_orthonormals(Z, &X, &Y);

	float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
	float3 localO;

	*eval = mf_sample_glass(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
	*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
	*eval *= *pdf;

	*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
	if(localO.z*localI.z > 0.0f) {
#ifdef __RAY_DIFFERENTIALS__
		*domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
		*domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
#endif
		return LABEL_REFLECT|LABEL_GLOSSY;
	}
	else {
#ifdef __RAY_DIFFERENTIALS__
		float cosI = dot(Z, I);
		float dnp = max(sqrtf(1.0f - (bsdf->ior * bsdf->ior * (1.0f - cosI*cosI))), 1e-7f);
		*domega_in_dx = -(bsdf->ior * dIdx) + ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdx, Z)) * Z;
		*domega_in_dy = -(bsdf->ior * dIdy) + ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdy, Z)) * Z;
#endif

		return LABEL_TRANSMIT|LABEL_GLOSSY;
	}
}

CCL_NAMESPACE_END