Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_principled_diffuse.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 39cca1bd970bc79324f31adf9a4dc9aa49bf5d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#pragma once

/* DISNEY PRINCIPLED DIFFUSE BRDF
 *
 * Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
 *
 * "Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering" (2015)
 * For the separation of retro-reflection, "2.3 Dielectric BRDF with integrated
 * subsurface scattering"
 */

#include "kernel/closure/bsdf_util.h"

#include "kernel/sample/mapping.h"

CCL_NAMESPACE_BEGIN

enum PrincipledDiffuseBsdfComponents {
  PRINCIPLED_DIFFUSE_FULL = 1,
  PRINCIPLED_DIFFUSE_LAMBERT = 2,
  PRINCIPLED_DIFFUSE_LAMBERT_EXIT = 4,
  PRINCIPLED_DIFFUSE_RETRO_REFLECTION = 8,
};

typedef struct PrincipledDiffuseBsdf {
  SHADER_CLOSURE_BASE;

  float roughness;
  int components;
} PrincipledDiffuseBsdf;

static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledDiffuseBsdf),
              "PrincipledDiffuseBsdf is too large!");

ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf)
{
  bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
  bsdf->components = PRINCIPLED_DIFFUSE_FULL;
  return SD_BSDF | SD_BSDF_HAS_EVAL;
}

ccl_device Spectrum
bsdf_principled_diffuse_compute_brdf(ccl_private const PrincipledDiffuseBsdf *bsdf,
                                     float3 N,
                                     float3 V,
                                     float3 L,
                                     ccl_private float *pdf)
{
  const float NdotL = dot(N, L);

  if (NdotL <= 0) {
    return zero_spectrum();
  }

  const float NdotV = dot(N, V);

  const float FV = schlick_fresnel(NdotV);
  const float FL = schlick_fresnel(NdotL);

  float f = 0.0f;

  /* Lambertian component. */
  if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_LAMBERT)) {
    f += (1.0f - 0.5f * FV) * (1.0f - 0.5f * FL);
  }
  else if (bsdf->components & PRINCIPLED_DIFFUSE_LAMBERT_EXIT) {
    f += (1.0f - 0.5f * FL);
  }

  /* Retro-reflection component. */
  if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_RETRO_REFLECTION)) {
    /* H = normalize(L + V);  // Bisector of an angle between L and V
     * LH2 = 2 * dot(L, H)^2 = 2cos(x)^2 = cos(2x) + 1 = dot(L, V) + 1,
     * half-angle x between L and V is at most 90 deg. */
    const float LH2 = dot(L, V) + 1;
    const float RR = bsdf->roughness * LH2;
    f += RR * (FL + FV + FL * FV * (RR - 1.0f));
  }

  float value = M_1_PI_F * NdotL * f;

  return make_spectrum(value);
}

/* Compute Fresnel at entry point, to be combined with #PRINCIPLED_DIFFUSE_LAMBERT_EXIT
 * at the exit point to get the complete BSDF. */
ccl_device_inline float bsdf_principled_diffuse_compute_entry_fresnel(const float NdotV)
{
  const float FV = schlick_fresnel(NdotV);
  return (1.0f - 0.5f * FV);
}

/* Ad-hoc weight adjustment to avoid retro-reflection taking away half the
 * samples from BSSRDF. */
ccl_device_inline float bsdf_principled_diffuse_retro_reflection_sample_weight(
    ccl_private PrincipledDiffuseBsdf *bsdf, const float3 I)
{
  return bsdf->roughness * schlick_fresnel(dot(bsdf->N, I));
}

ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf,
                                             int components)
{
  bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
  bsdf->components = components;
  return SD_BSDF | SD_BSDF_HAS_EVAL;
}

ccl_device Spectrum bsdf_principled_diffuse_eval_reflect(ccl_private const ShaderClosure *sc,
                                                         const float3 I,
                                                         const float3 omega_in,
                                                         ccl_private float *pdf)
{
  ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;

  float3 N = bsdf->N;
  float3 V = I;         // outgoing
  float3 L = omega_in;  // incoming

  if (dot(N, omega_in) > 0.0f) {
    *pdf = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
    return bsdf_principled_diffuse_compute_brdf(bsdf, N, V, L, pdf);
  }
  else {
    *pdf = 0.0f;
    return zero_spectrum();
  }
}

ccl_device Spectrum bsdf_principled_diffuse_eval_transmit(ccl_private const ShaderClosure *sc,
                                                          const float3 I,
                                                          const float3 omega_in,
                                                          ccl_private float *pdf)
{
  *pdf = 0.0f;
  return zero_spectrum();
}

ccl_device int bsdf_principled_diffuse_sample(ccl_private const ShaderClosure *sc,
                                              float3 Ng,
                                              float3 I,
                                              float randu,
                                              float randv,
                                              ccl_private Spectrum *eval,
                                              ccl_private float3 *omega_in,
                                              ccl_private float *pdf)
{
  ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;

  float3 N = bsdf->N;

  sample_cos_hemisphere(N, randu, randv, omega_in, pdf);

  if (dot(Ng, *omega_in) > 0) {
    *eval = bsdf_principled_diffuse_compute_brdf(bsdf, N, I, *omega_in, pdf);
  }
  else {
    *pdf = 0.0f;
    *eval = zero_spectrum();
  }
  return LABEL_REFLECT | LABEL_DIFFUSE;
}

CCL_NAMESPACE_END