Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bssrdf.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 562daf1286d520674b38fb16e02810e3f03eb49b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __KERNEL_BSSRDF_H__
#define __KERNEL_BSSRDF_H__

CCL_NAMESPACE_BEGIN

typedef ccl_addr_space struct Bssrdf {
  SHADER_CLOSURE_BASE;

  float3 radius;
  float3 albedo;
  float sharpness;
  float texture_blur;
  float roughness;
  float channels;
} Bssrdf;

static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");

/* Planar Truncated Gaussian
 *
 * Note how this is different from the typical gaussian, this one integrates
 * to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
 * that integrating x*exp(-x) gives a nice closed form solution. */

/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f

ccl_device float bssrdf_gaussian_eval(const float radius, float r)
{
  /* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
   * = 1 - exp(-Rm*Rm/(2*v)) */
  const float v = radius * radius * (0.25f * 0.25f);
  const float Rm = sqrtf(v * GAUSS_TRUNCATE);

  if (r >= Rm)
    return 0.0f;

  return expf(-r * r / (2.0f * v)) / (2.0f * M_PI_F * v);
}

ccl_device float bssrdf_gaussian_pdf(const float radius, float r)
{
  /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
  const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);

  return bssrdf_gaussian_eval(radius, r) * (1.0f / (area_truncated));
}

ccl_device void bssrdf_gaussian_sample(const float radius, float xi, float *r, float *h)
{
  /* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
   * r = sqrt(-2*v*logf(xi)) */
  const float v = radius * radius * (0.25f * 0.25f);
  const float Rm = sqrtf(v * GAUSS_TRUNCATE);

  /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
  const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);

  /* r(xi) */
  const float r_squared = -2.0f * v * logf(1.0f - xi * area_truncated);
  *r = sqrtf(r_squared);

  /* h^2 + r^2 = Rm^2 */
  *h = safe_sqrtf(Rm * Rm - r_squared);
}

/* Planar Cubic BSSRDF falloff
 *
 * This is basically (Rm - x)^3, with some factors to normalize it. For sampling
 * we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
 * far as I can tell has no closed form solution. So we get an iterative solution
 * instead with newton-raphson. */

ccl_device float bssrdf_cubic_eval(const float radius, const float sharpness, float r)
{
  if (sharpness == 0.0f) {
    const float Rm = radius;

    if (r >= Rm)
      return 0.0f;

    /* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
    const float Rm5 = (Rm * Rm) * (Rm * Rm) * Rm;
    const float f = Rm - r;
    const float num = f * f * f;

    return (10.0f * num) / (Rm5 * M_PI_F);
  }
  else {
    float Rm = radius * (1.0f + sharpness);

    if (r >= Rm)
      return 0.0f;

    /* custom variation with extra sharpness, to match the previous code */
    const float y = 1.0f / (1.0f + sharpness);
    float Rmy, ry, ryinv;

    if (sharpness == 1.0f) {
      Rmy = sqrtf(Rm);
      ry = sqrtf(r);
      ryinv = (ry > 0.0f) ? 1.0f / ry : 0.0f;
    }
    else {
      Rmy = powf(Rm, y);
      ry = powf(r, y);
      ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
    }

    const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
    const float f = Rmy - ry;
    const float num = f * (f * f) * (y * ryinv);

    return (10.0f * num) / (Rmy5 * M_PI_F);
  }
}

ccl_device float bssrdf_cubic_pdf(const float radius, const float sharpness, float r)
{
  return bssrdf_cubic_eval(radius, sharpness, r);
}

/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
ccl_device_forceinline float bssrdf_cubic_quintic_root_find(float xi)
{
  /* newton-raphson iteration, usually succeeds in 2-4 iterations, except
   * outside 0.02 ... 0.98 where it can go up to 10, so overall performance
   * should not be too bad */
  const float tolerance = 1e-6f;
  const int max_iteration_count = 10;
  float x = 0.25f;
  int i;

  for (i = 0; i < max_iteration_count; i++) {
    float x2 = x * x;
    float x3 = x2 * x;
    float nx = (1.0f - x);

    float f = 10.0f * x2 - 20.0f * x3 + 15.0f * x2 * x2 - 4.0f * x2 * x3 - xi;
    float f_ = 20.0f * (x * nx) * (nx * nx);

    if (fabsf(f) < tolerance || f_ == 0.0f)
      break;

    x = saturate(x - f / f_);
  }

  return x;
}

ccl_device void bssrdf_cubic_sample(
    const float radius, const float sharpness, float xi, float *r, float *h)
{
  float Rm = radius;
  float r_ = bssrdf_cubic_quintic_root_find(xi);

  if (sharpness != 0.0f) {
    r_ = powf(r_, 1.0f + sharpness);
    Rm *= (1.0f + sharpness);
  }

  r_ *= Rm;
  *r = r_;

  /* h^2 + r^2 = Rm^2 */
  *h = safe_sqrtf(Rm * Rm - r_ * r_);
}

/* Approximate Reflectance Profiles
 * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
 */

/* This is a bit arbitrary, just need big enough radius so it matches
 * the mean free length, but still not too big so sampling is still
 * effective. Might need some further tweaks.
 */
#define BURLEY_TRUNCATE 16.0f
#define BURLEY_TRUNCATE_CDF 0.9963790093708328f  // cdf(BURLEY_TRUNCATE)

ccl_device_inline float bssrdf_burley_fitting(float A)
{
  /* Diffuse surface transmission, equation (6). */
  return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
}

/* Scale mean free path length so it gives similar looking result
 * to Cubic and Gaussian models.
 */
ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
{
  return 0.25f * M_1_PI_F * r;
}

ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
{
  /* Mean free path length. */
  const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
  /* Surface albedo. */
  const float3 A = bssrdf->albedo;
  const float3 s = make_float3(
      bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));

  bssrdf->radius = l / s;
}

ccl_device float bssrdf_burley_eval(const float d, float r)
{
  const float Rm = BURLEY_TRUNCATE * d;

  if (r >= Rm)
    return 0.0f;

  /* Burley reflectance profile, equation (3).
   *
   * NOTES:
   * - Surface albedo is already included into sc->weight, no need to
   *   multiply by this term here.
   * - This is normalized diffuse model, so the equation is multiplied
   *   by 2*pi, which also matches cdf().
   */
  float exp_r_3_d = expf(-r / (3.0f * d));
  float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
  return (exp_r_d + exp_r_3_d) / (4.0f * d);
}

ccl_device float bssrdf_burley_pdf(const float d, float r)
{
  return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
}

/* Find the radius for desired CDF value.
 * Returns scaled radius, meaning the result is to be scaled up by d.
 * Since there's no closed form solution we do Newton-Raphson method to find it.
 */
ccl_device_forceinline float bssrdf_burley_root_find(float xi)
{
  const float tolerance = 1e-6f;
  const int max_iteration_count = 10;
  /* Do initial guess based on manual curve fitting, this allows us to reduce
   * number of iterations to maximum 4 across the [0..1] range. We keep maximum
   * number of iteration higher just to be sure we didn't miss root in some
   * corner case.
   */
  float r;
  if (xi <= 0.9f) {
    r = expf(xi * xi * 2.4f) - 1.0f;
  }
  else {
    /* TODO(sergey): Some nicer curve fit is possible here. */
    r = 15.0f;
  }
  /* Solve against scaled radius. */
  for (int i = 0; i < max_iteration_count; i++) {
    float exp_r_3 = expf(-r / 3.0f);
    float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
    float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
    float f_ = 0.25f * exp_r + 0.25f * exp_r_3;

    if (fabsf(f) < tolerance || f_ == 0.0f) {
      break;
    }

    r = r - f / f_;
    if (r < 0.0f) {
      r = 0.0f;
    }
  }
  return r;
}

ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
{
  const float Rm = BURLEY_TRUNCATE * d;
  const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;

  *r = r_;

  /* h^2 + r^2 = Rm^2 */
  *h = safe_sqrtf(Rm * Rm - r_ * r_);
}

/* None BSSRDF falloff
 *
 * Samples distributed over disk with no falloff, for reference. */

ccl_device float bssrdf_none_eval(const float radius, float r)
{
  const float Rm = radius;
  return (r < Rm) ? 1.0f : 0.0f;
}

ccl_device float bssrdf_none_pdf(const float radius, float r)
{
  /* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
  const float Rm = radius;
  const float area = (M_PI_F * Rm * Rm);

  return bssrdf_none_eval(radius, r) / area;
}

ccl_device void bssrdf_none_sample(const float radius, float xi, float *r, float *h)
{
  /* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
   * r = sqrt(xi)*Rm */
  const float Rm = radius;
  const float r_ = sqrtf(xi) * Rm;

  *r = r_;

  /* h^2 + r^2 = Rm^2 */
  *h = safe_sqrtf(Rm * Rm - r_ * r_);
}

/* Generic */

ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
{
  Bssrdf *bssrdf = (Bssrdf *)closure_alloc(sd, sizeof(Bssrdf), CLOSURE_NONE_ID, weight);

  if (bssrdf == NULL) {
    return NULL;
  }

  float sample_weight = fabsf(average(weight));
  bssrdf->sample_weight = sample_weight;
  return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
}

ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
{
  int flag = 0;
  int bssrdf_channels = 3;
  float3 diffuse_weight = make_float3(0.0f, 0.0f, 0.0f);

  /* Verify if the radii are large enough to sample without precision issues. */
  if (bssrdf->radius.x < BSSRDF_MIN_RADIUS) {
    diffuse_weight.x = bssrdf->weight.x;
    bssrdf->weight.x = 0.0f;
    bssrdf->radius.x = 0.0f;
    bssrdf_channels--;
  }
  if (bssrdf->radius.y < BSSRDF_MIN_RADIUS) {
    diffuse_weight.y = bssrdf->weight.y;
    bssrdf->weight.y = 0.0f;
    bssrdf->radius.y = 0.0f;
    bssrdf_channels--;
  }
  if (bssrdf->radius.z < BSSRDF_MIN_RADIUS) {
    diffuse_weight.z = bssrdf->weight.z;
    bssrdf->weight.z = 0.0f;
    bssrdf->radius.z = 0.0f;
    bssrdf_channels--;
  }

  if (bssrdf_channels < 3) {
    /* Add diffuse BSDF if any radius too small. */
#ifdef __PRINCIPLED__
    if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
      float roughness = bssrdf->roughness;
      float3 N = bssrdf->N;

      PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
          sd, sizeof(PrincipledDiffuseBsdf), diffuse_weight);

      if (bsdf) {
        bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
        bsdf->N = N;
        bsdf->roughness = roughness;
        flag |= bsdf_principled_diffuse_setup(bsdf);
      }
    }
    else
#endif /* __PRINCIPLED__ */
    {
      DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), diffuse_weight);

      if (bsdf) {
        bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
        bsdf->N = bssrdf->N;
        flag |= bsdf_diffuse_setup(bsdf);
      }
    }
  }

  /* Setup BSSRDF if radius is large enough. */
  if (bssrdf_channels > 0) {
    bssrdf->type = type;
    bssrdf->channels = bssrdf_channels;
    bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf->channels;
    bssrdf->texture_blur = saturate(bssrdf->texture_blur);
    bssrdf->sharpness = saturate(bssrdf->sharpness);

    if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_PRINCIPLED_ID ||
        type == CLOSURE_BSSRDF_RANDOM_WALK_ID ||
        type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
      bssrdf_burley_setup(bssrdf);
    }

    flag |= SD_BSSRDF;
  }
  else {
    bssrdf->type = type;
    bssrdf->sample_weight = 0.0f;
  }

  return flag;
}

ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
  const Bssrdf *bssrdf = (const Bssrdf *)sc;
  float radius;

  /* Sample color channel and reuse random number. Only a subset of channels
   * may be used if their radius was too small to handle as BSSRDF. */
  xi *= bssrdf->channels;

  if (xi < 1.0f) {
    radius = (bssrdf->radius.x > 0.0f) ? bssrdf->radius.x :
             (bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
                                         bssrdf->radius.z;
  }
  else if (xi < 2.0f) {
    xi -= 1.0f;
    radius = (bssrdf->radius.x > 0.0f && bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
                                                                    bssrdf->radius.z;
  }
  else {
    xi -= 2.0f;
    radius = bssrdf->radius.z;
  }

  /* Sample BSSRDF. */
  if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
    bssrdf_cubic_sample(radius, bssrdf->sharpness, xi, r, h);
  }
  else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
    bssrdf_gaussian_sample(radius, xi, r, h);
  }
  else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
          *     bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID) */
    bssrdf_burley_sample(radius, xi, r, h);
  }
}

ccl_device float bssrdf_channel_pdf(const Bssrdf *bssrdf, float radius, float r)
{
  if (radius == 0.0f) {
    return 0.0f;
  }
  else if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
    return bssrdf_cubic_pdf(radius, bssrdf->sharpness, r);
  }
  else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
    return bssrdf_gaussian_pdf(radius, r);
  }
  else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
          *     bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
    return bssrdf_burley_pdf(radius, r);
  }
}

ccl_device_forceinline float3 bssrdf_eval(const ShaderClosure *sc, float r)
{
  const Bssrdf *bssrdf = (const Bssrdf *)sc;

  return make_float3(bssrdf_channel_pdf(bssrdf, bssrdf->radius.x, r),
                     bssrdf_channel_pdf(bssrdf, bssrdf->radius.y, r),
                     bssrdf_channel_pdf(bssrdf, bssrdf->radius.z, r));
}

ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
{
  const Bssrdf *bssrdf = (const Bssrdf *)sc;
  float3 pdf = bssrdf_eval(sc, r);

  return (pdf.x + pdf.y + pdf.z) / bssrdf->channels;
}

CCL_NAMESPACE_END

#endif /* __KERNEL_BSSRDF_H__ */