Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bssrdf.h « closure « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f817dcd5f2d5e5b099439eabfe6825703a0c50c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __KERNEL_BSSRDF_H__
#define __KERNEL_BSSRDF_H__

CCL_NAMESPACE_BEGIN

ccl_device int bssrdf_setup(ShaderClosure *sc, ClosureType type)
{
	if(sc->data0 < BSSRDF_MIN_RADIUS) {
		/* revert to diffuse BSDF if radius too small */
		sc->data0 = 0.0f;
		sc->data1 = 0.0f;
		int flag = bsdf_diffuse_setup(sc);
		sc->type = CLOSURE_BSDF_BSSRDF_ID;
		return flag;
	}
	else {
		sc->data1 = saturate(sc->data1); /* texture blur */
		sc->T.x = saturate(sc->T.x); /* sharpness */
		sc->type = type;

		return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
	}
}

/* Planar Truncated Gaussian
 *
 * Note how this is different from the typical gaussian, this one integrates
 * to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
 * that integrating x*exp(-x) gives a nice closed form solution. */

/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f

ccl_device float bssrdf_gaussian_eval(ShaderClosure *sc, float r)
{
	/* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
	 * = 1 - exp(-Rm*Rm/(2*v)) */
	const float v = sc->data0*sc->data0*(0.25f*0.25f);
	const float Rm = sqrtf(v*GAUSS_TRUNCATE);

	if(r >= Rm)
		return 0.0f;

	return expf(-r*r/(2.0f*v))/(2.0f*M_PI_F*v);
}

ccl_device float bssrdf_gaussian_pdf(ShaderClosure *sc, float r)
{
	/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
	const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);

	return bssrdf_gaussian_eval(sc, r) * (1.0f/(area_truncated));
}

ccl_device void bssrdf_gaussian_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
	/* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
	 * r = sqrt(-2*v*logf(xi)) */

	const float v = sc->data0*sc->data0*(0.25f*0.25f);
	const float Rm = sqrtf(v*GAUSS_TRUNCATE);

	/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
	const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);

	/* r(xi) */
	const float r_squared = -2.0f*v*logf(1.0f - xi*area_truncated);
	*r = sqrtf(r_squared);

	 /* h^2 + r^2 = Rm^2 */
	 *h = sqrtf(Rm*Rm - r_squared);
}

/* Planar Cubic BSSRDF falloff
 *
 * This is basically (Rm - x)^3, with some factors to normalize it. For sampling
 * we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
 * far as I can tell has no closed form solution. So we get an iterative solution
 * instead with newton-raphson. */

ccl_device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
{
	const float sharpness = sc->T.x;

	if(sharpness == 0.0f) {
		const float Rm = sc->data0;

		if(r >= Rm)
			return 0.0f;

		/* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
		const float Rm5 = (Rm*Rm) * (Rm*Rm) * Rm;
		const float f = Rm - r;
		const float num = f*f*f;

		return (10.0f * num) / (Rm5 * M_PI_F);

	}
	else {
		float Rm = sc->data0*(1.0f + sharpness);

		if(r >= Rm)
			return 0.0f;

		/* custom variation with extra sharpness, to match the previous code */
		const float y = 1.0f/(1.0f + sharpness);
		float Rmy, ry, ryinv;

		if(sharpness == 1.0f) {
			Rmy = sqrtf(Rm);
			ry = sqrtf(r);
			ryinv = (ry > 0.0f)? 1.0f/ry: 0.0f;
		}
		else {
			Rmy = powf(Rm, y);
			ry = powf(r, y);
			ryinv = (r > 0.0f)? powf(r, 2.0f*y - 2.0f): 0.0f;
		}

		const float Rmy5 = (Rmy*Rmy) * (Rmy*Rmy) * Rmy;
		const float f = Rmy - ry;
		const float num = f*(f*f)*(y*ryinv);

		return (10.0f * num) / (Rmy5 * M_PI_F);
	}
}

ccl_device float bssrdf_cubic_pdf(ShaderClosure *sc, float r)
{
	return bssrdf_cubic_eval(sc, r);
}

/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
ccl_device float bssrdf_cubic_quintic_root_find(float xi)
{
	/* newton-raphson iteration, usually succeeds in 2-4 iterations, except
	 * outside 0.02 ... 0.98 where it can go up to 10, so overall performance
	 * should not be too bad */
	const float tolerance = 1e-6f;
	const int max_iteration_count = 10;
	float x = 0.25f;
	int i;

	for(i = 0; i < max_iteration_count; i++) {
		float x2 = x*x;
		float x3 = x2*x;
		float nx = (1.0f - x);

		float f = 10.0f*x2 - 20.0f*x3 + 15.0f*x2*x2 - 4.0f*x2*x3 - xi;
		float f_ = 20.0f*(x*nx)*(nx*nx);

		if(fabsf(f) < tolerance || f_ == 0.0f)
			break;

		x = saturate(x - f/f_);
	}

	return x;
}

ccl_device void bssrdf_cubic_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
	float Rm = sc->data0;
	float r_ = bssrdf_cubic_quintic_root_find(xi);

	const float sharpness = sc->T.x;
	if(sharpness != 0.0f) {
		r_ = powf(r_, 1.0f + sharpness);
		Rm *= (1.0f + sharpness);
	}
	
	r_ *= Rm;
	*r = r_;

	/* h^2 + r^2 = Rm^2 */
	*h = sqrtf(Rm*Rm - r_*r_);
}

/* None BSSRDF falloff
 * 
 * Samples distributed over disk with no falloff, for reference. */

ccl_device float bssrdf_none_eval(ShaderClosure *sc, float r)
{
	const float Rm = sc->data0;
	return (r < Rm)? 1.0f: 0.0f;
}

ccl_device float bssrdf_none_pdf(ShaderClosure *sc, float r)
{
	/* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
	const float Rm = sc->data0;
	const float area = (M_PI_F*Rm*Rm);

	return bssrdf_none_eval(sc, r) / area;
}

ccl_device void bssrdf_none_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
	/* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
	 * r = sqrt(xi)*Rm */
	const float Rm = sc->data0;
	const float r_ = sqrtf(xi)*Rm;

	*r = r_;

	/* h^2 + r^2 = Rm^2 */
	*h = sqrtf(Rm*Rm - r_*r_);
}

/* Generic */

ccl_device void bssrdf_sample(ShaderClosure *sc, float xi, float *r, float *h)
{
	if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
		bssrdf_cubic_sample(sc, xi, r, h);
	else
		bssrdf_gaussian_sample(sc, xi, r, h);
}

ccl_device float bssrdf_pdf(ShaderClosure *sc, float r)
{
	if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
		return bssrdf_cubic_pdf(sc, r);
	else
		return bssrdf_gaussian_pdf(sc, r);
}

CCL_NAMESPACE_END

#endif /* __KERNEL_BSSRDF_H__ */