Welcome to mirror list, hosted at ThFree Co, Russian Federation.

passes.h « film « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 22b4b779a177de7ef2017b47355dce458d0bb776 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include "kernel/geom/geom.h"

#include "kernel/film/id_passes.h"
#include "kernel/film/write_passes.h"

CCL_NAMESPACE_BEGIN

/* Get pointer to pixel in render buffer. */
ccl_device_forceinline ccl_global float *kernel_pass_pixel_render_buffer(
    KernelGlobals kg, ConstIntegratorState state, ccl_global float *ccl_restrict render_buffer)
{
  const uint32_t render_pixel_index = INTEGRATOR_STATE(state, path, render_pixel_index);
  const uint64_t render_buffer_offset = (uint64_t)render_pixel_index *
                                        kernel_data.film.pass_stride;
  return render_buffer + render_buffer_offset;
}

#ifdef __DENOISING_FEATURES__

ccl_device_forceinline void kernel_write_denoising_features_surface(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const ShaderData *sd,
    ccl_global float *ccl_restrict render_buffer)
{
  if (!(INTEGRATOR_STATE(state, path, flag) & PATH_RAY_DENOISING_FEATURES)) {
    return;
  }

  /* Skip implicitly transparent surfaces. */
  if (sd->flag & SD_HAS_ONLY_VOLUME) {
    return;
  }

  ccl_global float *buffer = kernel_pass_pixel_render_buffer(kg, state, render_buffer);

  if (kernel_data.film.pass_denoising_depth != PASS_UNUSED) {
    const float3 denoising_feature_throughput = INTEGRATOR_STATE(
        state, path, denoising_feature_throughput);
    const float denoising_depth = ensure_finite(average(denoising_feature_throughput) *
                                                sd->ray_length);
    kernel_write_pass_float(buffer + kernel_data.film.pass_denoising_depth, denoising_depth);
  }

  float3 normal = zero_float3();
  float3 diffuse_albedo = zero_float3();
  float3 specular_albedo = zero_float3();
  float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;

  for (int i = 0; i < sd->num_closure; i++) {
    ccl_private const ShaderClosure *sc = &sd->closure[i];

    if (!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
      continue;
    }

    /* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
    normal += sc->N * sc->sample_weight;
    sum_weight += sc->sample_weight;

    float3 closure_albedo = sc->weight;
    /* Closures that include a Fresnel term typically have weights close to 1 even though their
     * actual contribution is significantly lower.
     * To account for this, we scale their weight by the average fresnel factor (the same is also
     * done for the sample weight in the BSDF setup, so we don't need to scale that here). */
    if (CLOSURE_IS_BSDF_MICROFACET_FRESNEL(sc->type)) {
      ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)sc;
      closure_albedo *= bsdf->extra->fresnel_color;
    }
    else if (sc->type == CLOSURE_BSDF_PRINCIPLED_SHEEN_ID) {
      ccl_private PrincipledSheenBsdf *bsdf = (ccl_private PrincipledSheenBsdf *)sc;
      closure_albedo *= bsdf->avg_value;
    }
    else if (sc->type == CLOSURE_BSDF_HAIR_PRINCIPLED_ID) {
      closure_albedo *= bsdf_principled_hair_albedo(sc);
    }

    if (bsdf_get_specular_roughness_squared(sc) > sqr(0.075f)) {
      diffuse_albedo += closure_albedo;
      sum_nonspecular_weight += sc->sample_weight;
    }
    else {
      specular_albedo += closure_albedo;
    }
  }

  /* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
  if ((sum_weight == 0.0f) || (sum_nonspecular_weight * 4.0f > sum_weight)) {
    if (sum_weight != 0.0f) {
      normal /= sum_weight;
    }

    if (kernel_data.film.pass_denoising_normal != PASS_UNUSED) {
      /* Transform normal into camera space. */
      const Transform worldtocamera = kernel_data.cam.worldtocamera;
      normal = transform_direction(&worldtocamera, normal);

      const float3 denoising_normal = ensure_finite3(normal);
      kernel_write_pass_float3(buffer + kernel_data.film.pass_denoising_normal, denoising_normal);
    }

    if (kernel_data.film.pass_denoising_albedo != PASS_UNUSED) {
      const float3 denoising_feature_throughput = INTEGRATOR_STATE(
          state, path, denoising_feature_throughput);
      const float3 denoising_albedo = ensure_finite3(denoising_feature_throughput *
                                                     diffuse_albedo);
      kernel_write_pass_float3(buffer + kernel_data.film.pass_denoising_albedo, denoising_albedo);
    }

    INTEGRATOR_STATE_WRITE(state, path, flag) &= ~PATH_RAY_DENOISING_FEATURES;
  }
  else {
    INTEGRATOR_STATE_WRITE(state, path, denoising_feature_throughput) *= specular_albedo;
  }
}

ccl_device_forceinline void kernel_write_denoising_features_volume(KernelGlobals kg,
                                                                   IntegratorState state,
                                                                   const float3 albedo,
                                                                   const bool scatter,
                                                                   ccl_global float *ccl_restrict
                                                                       render_buffer)
{
  ccl_global float *buffer = kernel_pass_pixel_render_buffer(kg, state, render_buffer);
  const float3 denoising_feature_throughput = INTEGRATOR_STATE(
      state, path, denoising_feature_throughput);

  if (scatter && kernel_data.film.pass_denoising_normal != PASS_UNUSED) {
    /* Assume scatter is sufficiently diffuse to stop writing denoising features. */
    INTEGRATOR_STATE_WRITE(state, path, flag) &= ~PATH_RAY_DENOISING_FEATURES;

    /* Write view direction as normal. */
    const float3 denoising_normal = make_float3(0.0f, 0.0f, -1.0f);
    kernel_write_pass_float3(buffer + kernel_data.film.pass_denoising_normal, denoising_normal);
  }

  if (kernel_data.film.pass_denoising_albedo != PASS_UNUSED) {
    /* Write albedo. */
    const float3 denoising_albedo = ensure_finite3(denoising_feature_throughput * albedo);
    kernel_write_pass_float3(buffer + kernel_data.film.pass_denoising_albedo, denoising_albedo);
  }
}
#endif /* __DENOISING_FEATURES__ */

#ifdef __SHADOW_CATCHER__

/* Write shadow catcher passes on a bounce from the shadow catcher object. */
ccl_device_forceinline void kernel_write_shadow_catcher_bounce_data(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const ShaderData *sd,
    ccl_global float *ccl_restrict render_buffer)
{
  if (!kernel_data.integrator.has_shadow_catcher) {
    return;
  }

  kernel_assert(kernel_data.film.pass_shadow_catcher_sample_count != PASS_UNUSED);
  kernel_assert(kernel_data.film.pass_shadow_catcher_matte != PASS_UNUSED);

  if (!kernel_shadow_catcher_is_path_split_bounce(kg, state, sd->object_flag)) {
    return;
  }

  ccl_global float *buffer = kernel_pass_pixel_render_buffer(kg, state, render_buffer);

  /* Count sample for the shadow catcher object. */
  kernel_write_pass_float(buffer + kernel_data.film.pass_shadow_catcher_sample_count, 1.0f);

  /* Since the split is done, the sample does not contribute to the matte, so accumulate it as
   * transparency to the matte. */
  const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
  kernel_write_pass_float(buffer + kernel_data.film.pass_shadow_catcher_matte + 3,
                          average(throughput));
}

#endif /* __SHADOW_CATCHER__ */

ccl_device_inline size_t kernel_write_id_pass(ccl_global float *ccl_restrict buffer,
                                              size_t depth,
                                              float id,
                                              float matte_weight)
{
  kernel_write_id_slots(buffer, depth * 2, id, matte_weight);
  return depth * 4;
}

ccl_device_inline void kernel_write_data_passes(KernelGlobals kg,
                                                IntegratorState state,
                                                ccl_private const ShaderData *sd,
                                                ccl_global float *ccl_restrict render_buffer)
{
#ifdef __PASSES__
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

  if (!(path_flag & PATH_RAY_CAMERA)) {
    return;
  }

  const int flag = kernel_data.film.pass_flag;

  if (!(flag & PASS_ANY)) {
    return;
  }

  ccl_global float *buffer = kernel_pass_pixel_render_buffer(kg, state, render_buffer);

  if (!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
    if (!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f ||
        average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
      if (INTEGRATOR_STATE(state, path, sample) == 0) {
        if (flag & PASSMASK(DEPTH)) {
          const float depth = camera_z_depth(kg, sd->P);
          kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
        }
        if (flag & PASSMASK(OBJECT_ID)) {
          const float id = object_pass_id(kg, sd->object);
          kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
        }
        if (flag & PASSMASK(MATERIAL_ID)) {
          const float id = shader_pass_id(kg, sd);
          kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
        }
        if (flag & PASSMASK(POSITION)) {
          const float3 position = sd->P;
          kernel_write_pass_float3(buffer + kernel_data.film.pass_position, position);
        }
      }

      if (flag & PASSMASK(NORMAL)) {
        const float3 normal = shader_bsdf_average_normal(kg, sd);
        kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
      }
      if (flag & PASSMASK(ROUGHNESS)) {
        const float roughness = shader_bsdf_average_roughness(sd);
        kernel_write_pass_float(buffer + kernel_data.film.pass_roughness, roughness);
      }
      if (flag & PASSMASK(UV)) {
        const float3 uv = primitive_uv(kg, sd);
        kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
      }
      if (flag & PASSMASK(MOTION)) {
        const float4 speed = primitive_motion_vector(kg, sd);
        kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
        kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
      }

      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SINGLE_PASS_DONE;
    }
  }

  if (kernel_data.film.cryptomatte_passes) {
    const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
    const float matte_weight = average(throughput) *
                               (1.0f - average(shader_bsdf_transparency(kg, sd)));
    if (matte_weight > 0.0f) {
      ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte;
      if (kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
        const float id = object_cryptomatte_id(kg, sd->object);
        cryptomatte_buffer += kernel_write_id_pass(
            cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight);
      }
      if (kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
        const float id = shader_cryptomatte_id(kg, sd->shader);
        cryptomatte_buffer += kernel_write_id_pass(
            cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight);
      }
      if (kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
        const float id = object_cryptomatte_asset_id(kg, sd->object);
        cryptomatte_buffer += kernel_write_id_pass(
            cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight);
      }
    }
  }

  if (flag & PASSMASK(DIFFUSE_COLOR)) {
    const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
    kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color,
                             shader_bsdf_diffuse(kg, sd) * throughput);
  }
  if (flag & PASSMASK(GLOSSY_COLOR)) {
    const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
    kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color,
                             shader_bsdf_glossy(kg, sd) * throughput);
  }
  if (flag & PASSMASK(TRANSMISSION_COLOR)) {
    const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
    kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color,
                             shader_bsdf_transmission(kg, sd) * throughput);
  }
  if (flag & PASSMASK(MIST)) {
    /* Bring depth into 0..1 range. */
    const float mist_start = kernel_data.film.mist_start;
    const float mist_inv_depth = kernel_data.film.mist_inv_depth;

    const float depth = camera_distance(kg, sd->P);
    float mist = saturatef((depth - mist_start) * mist_inv_depth);

    /* Falloff */
    const float mist_falloff = kernel_data.film.mist_falloff;

    if (mist_falloff == 1.0f)
      ;
    else if (mist_falloff == 2.0f)
      mist = mist * mist;
    else if (mist_falloff == 0.5f)
      mist = sqrtf(mist);
    else
      mist = powf(mist, mist_falloff);

    /* Modulate by transparency */
    const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
    const float3 alpha = shader_bsdf_alpha(kg, sd);
    const float mist_output = (1.0f - mist) * average(throughput * alpha);

    /* Note that the final value in the render buffer we want is 1 - mist_output,
     * to avoid having to tracking this in the Integrator state we do the negation
     * after rendering. */
    kernel_write_pass_float(buffer + kernel_data.film.pass_mist, mist_output);
  }
#endif
}

CCL_NAMESPACE_END