Welcome to mirror list, hosted at ThFree Co, Russian Federation.

filter_nlm_gpu.h « filter « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 650c743f34f50671600e0f5b48f16ad248d8202c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * Copyright 2011-2017 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Determines pixel coordinates and offset for the current thread.
 * Returns whether the thread should do any work.
 *
 * All coordinates are relative to the denoising buffer!
 *
 * Window is the rect that should be processed.
 * co is filled with (x, y, dx, dy).
 */
ccl_device_inline bool get_nlm_coords_window(
    int w, int h, int r, int stride, int4 *rect, int4 *co, int *ofs, int4 window)
{
  /* Determine the pixel offset that this thread should apply. */
  int s = 2 * r + 1;
  int si = ccl_global_id(1);
  int sx = si % s;
  int sy = si / s;
  if (sy >= s) {
    return false;
  }

  /* Pixels still need to lie inside the denoising buffer after applying the offset,
   * so determine the area for which this is the case. */
  int dx = sx - r;
  int dy = sy - r;

  *rect = make_int4(max(0, -dx), max(0, -dy), w - max(0, dx), h - max(0, dy));

  /* Find the intersection of the area that we want to process (window) and the area
   * that can be processed (rect) to get the final area for this offset. */
  int4 clip_area = rect_clip(window, *rect);

  /* If the radius is larger than one of the sides of the window,
   * there will be shifts for which there is no usable pixel at all. */
  if (!rect_is_valid(clip_area)) {
    return false;
  }

  /* Map the linear thread index to pixels inside the clip area. */
  int x, y;
  if (!local_index_to_coord(clip_area, ccl_global_id(0), &x, &y)) {
    return false;
  }

  *co = make_int4(x, y, dx, dy);

  *ofs = (sy * s + sx) * stride;

  return true;
}

ccl_device_inline bool get_nlm_coords(
    int w, int h, int r, int stride, int4 *rect, int4 *co, int *ofs)
{
  return get_nlm_coords_window(w, h, r, stride, rect, co, ofs, make_int4(0, 0, w, h));
}

ccl_device_inline void kernel_filter_nlm_calc_difference(
    int x,
    int y,
    int dx,
    int dy,
    const ccl_global float *ccl_restrict weight_image,
    const ccl_global float *ccl_restrict variance_image,
    const ccl_global float *ccl_restrict scale_image,
    ccl_global float *difference_image,
    int4 rect,
    int stride,
    int channel_offset,
    int frame_offset,
    float a,
    float k_2)
{
  int idx_p = y * stride + x, idx_q = (y + dy) * stride + (x + dx) + frame_offset;
  int numChannels = channel_offset ? 3 : 1;

  float diff = 0.0f;
  float scale_fac = 1.0f;
  if (scale_image) {
    scale_fac = clamp(scale_image[idx_p] / scale_image[idx_q], 0.25f, 4.0f);
  }

  for (int c = 0; c < numChannels; c++, idx_p += channel_offset, idx_q += channel_offset) {
    float cdiff = weight_image[idx_p] - scale_fac * weight_image[idx_q];
    float pvar = variance_image[idx_p];
    float qvar = sqr(scale_fac) * variance_image[idx_q];
    diff += (cdiff * cdiff - a * (pvar + min(pvar, qvar))) / (1e-8f + k_2 * (pvar + qvar));
  }
  if (numChannels > 1) {
    diff *= 1.0f / numChannels;
  }
  difference_image[y * stride + x] = diff;
}

ccl_device_inline void kernel_filter_nlm_blur(int x,
                                              int y,
                                              const ccl_global float *ccl_restrict
                                                  difference_image,
                                              ccl_global float *out_image,
                                              int4 rect,
                                              int stride,
                                              int f)
{
  float sum = 0.0f;
  const int low = max(rect.y, y - f);
  const int high = min(rect.w, y + f + 1);
  for (int y1 = low; y1 < high; y1++) {
    sum += difference_image[y1 * stride + x];
  }
  sum *= 1.0f / (high - low);
  out_image[y * stride + x] = sum;
}

ccl_device_inline void kernel_filter_nlm_calc_weight(int x,
                                                     int y,
                                                     const ccl_global float *ccl_restrict
                                                         difference_image,
                                                     ccl_global float *out_image,
                                                     int4 rect,
                                                     int stride,
                                                     int f)
{
  float sum = 0.0f;
  const int low = max(rect.x, x - f);
  const int high = min(rect.z, x + f + 1);
  for (int x1 = low; x1 < high; x1++) {
    sum += difference_image[y * stride + x1];
  }
  sum *= 1.0f / (high - low);
  out_image[y * stride + x] = fast_expf(-max(sum, 0.0f));
}

ccl_device_inline void kernel_filter_nlm_update_output(int x,
                                                       int y,
                                                       int dx,
                                                       int dy,
                                                       const ccl_global float *ccl_restrict
                                                           difference_image,
                                                       const ccl_global float *ccl_restrict image,
                                                       ccl_global float *out_image,
                                                       ccl_global float *accum_image,
                                                       int4 rect,
                                                       int channel_offset,
                                                       int stride,
                                                       int f)
{
  float sum = 0.0f;
  const int low = max(rect.x, x - f);
  const int high = min(rect.z, x + f + 1);
  for (int x1 = low; x1 < high; x1++) {
    sum += difference_image[y * stride + x1];
  }
  sum *= 1.0f / (high - low);

  int idx_p = y * stride + x, idx_q = (y + dy) * stride + (x + dx);
  if (out_image) {
    atomic_add_and_fetch_float(accum_image + idx_p, sum);

    float val = image[idx_q];
    if (channel_offset) {
      val += image[idx_q + channel_offset];
      val += image[idx_q + 2 * channel_offset];
      val *= 1.0f / 3.0f;
    }
    atomic_add_and_fetch_float(out_image + idx_p, sum * val);
  }
  else {
    accum_image[idx_p] = sum;
  }
}

ccl_device_inline void kernel_filter_nlm_construct_gramian(
    int x,
    int y,
    int dx,
    int dy,
    int t,
    const ccl_global float *ccl_restrict difference_image,
    const ccl_global float *ccl_restrict buffer,
    const ccl_global float *ccl_restrict transform,
    ccl_global int *rank,
    ccl_global float *XtWX,
    ccl_global float3 *XtWY,
    int4 rect,
    int4 filter_window,
    int stride,
    int f,
    int pass_stride,
    int frame_offset,
    bool use_time,
    int localIdx)
{
  const int low = max(rect.x, x - f);
  const int high = min(rect.z, x + f + 1);
  float sum = 0.0f;
  for (int x1 = low; x1 < high; x1++) {
    sum += difference_image[y * stride + x1];
  }
  float weight = sum * (1.0f / (high - low));

  /* Reconstruction data is only stored for pixels inside the filter window,
   * so compute the pixels's index in there. */
  int storage_ofs = coord_to_local_index(filter_window, x, y);
  transform += storage_ofs;
  rank += storage_ofs;
  XtWX += storage_ofs;
  XtWY += storage_ofs;

  kernel_filter_construct_gramian(x,
                                  y,
                                  rect_size(filter_window),
                                  dx,
                                  dy,
                                  t,
                                  stride,
                                  pass_stride,
                                  frame_offset,
                                  use_time,
                                  buffer,
                                  transform,
                                  rank,
                                  weight,
                                  XtWX,
                                  XtWY,
                                  localIdx);
}

ccl_device_inline void kernel_filter_nlm_normalize(int x,
                                                   int y,
                                                   ccl_global float *out_image,
                                                   const ccl_global float *ccl_restrict
                                                       accum_image,
                                                   int stride)
{
  out_image[y * stride + x] /= accum_image[y * stride + x];
}

CCL_NAMESPACE_END