Welcome to mirror list, hosted at ThFree Co, Russian Federation.

filter_prefilter.h « filter « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 97cecba190ee6f43dd4b79925921e3eb2cbeb9a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*
 * Copyright 2011-2017 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/**
 * First step of the shadow prefiltering, performs the shadow division and stores all data
 * in a nice and easy rectangular array that can be passed to the NLM filter.
 *
 * Calculates:
 * \param unfiltered: Contains the two half images of the shadow feature pass
 * \param sampleVariance: The sample-based variance calculated in the kernel.
 * Note: This calculation is biased in general,
 * and especially here since the variance of the ratio can only be approximated.
 * \param sampleVarianceV: Variance of the sample variance estimation, quite noisy
 * (since it's essentially the buffer variance of the two variance halves)
 * \param bufferVariance: The buffer-based variance of the shadow feature.
 * Unbiased, but quite noisy.
 */
ccl_device void kernel_filter_divide_shadow(int sample,
                                            CCL_FILTER_TILE_INFO,
                                            int x,
                                            int y,
                                            ccl_global float *unfilteredA,
                                            ccl_global float *unfilteredB,
                                            ccl_global float *sampleVariance,
                                            ccl_global float *sampleVarianceV,
                                            ccl_global float *bufferVariance,
                                            int4 rect,
                                            int buffer_pass_stride,
                                            int buffer_denoising_offset)
{
  int xtile = (x < tile_info->x[1]) ? 0 : ((x < tile_info->x[2]) ? 1 : 2);
  int ytile = (y < tile_info->y[1]) ? 0 : ((y < tile_info->y[2]) ? 1 : 2);
  int tile = ytile * 3 + xtile;

  int offset = tile_info->offsets[tile];
  int stride = tile_info->strides[tile];
  const ccl_global float *ccl_restrict center_buffer = (ccl_global float *)ccl_get_tile_buffer(
      tile);
  center_buffer += (y * stride + x + offset) * buffer_pass_stride;
  center_buffer += buffer_denoising_offset + 14;

  int buffer_w = align_up(rect.z - rect.x, 4);
  int idx = (y - rect.y) * buffer_w + (x - rect.x);
  unfilteredA[idx] = center_buffer[1] / max(center_buffer[0], 1e-7f);
  unfilteredB[idx] = center_buffer[4] / max(center_buffer[3], 1e-7f);

  float varA = center_buffer[2];
  float varB = center_buffer[5];
  int odd_sample = (sample + 1) / 2;
  int even_sample = sample / 2;

  /* Approximate variance as E[x^2] - 1/N * (E[x])^2, since online variance
   * update does not work efficiently with atomics in the kernel. */
  varA = max(0.0f, varA - unfilteredA[idx] * unfilteredA[idx] * odd_sample);
  varB = max(0.0f, varB - unfilteredB[idx] * unfilteredB[idx] * even_sample);

  varA /= max(odd_sample - 1, 1);
  varB /= max(even_sample - 1, 1);

  sampleVariance[idx] = 0.5f * (varA + varB) / sample;
  sampleVarianceV[idx] = 0.5f * (varA - varB) * (varA - varB) / (sample * sample);
  bufferVariance[idx] = 0.5f * (unfilteredA[idx] - unfilteredB[idx]) *
                        (unfilteredA[idx] - unfilteredB[idx]);
}

/* Load a regular feature from the render buffers into the denoise buffer.
 * Parameters:
 * - sample: The sample amount in the buffer, used to normalize the buffer.
 * - m_offset, v_offset: Render Buffer Pass offsets of mean and variance of the feature.
 * - x, y: Current pixel
 * - mean, variance: Target denoise buffers.
 * - rect: The prefilter area (lower pixels inclusive, upper pixels exclusive).
 */
ccl_device void kernel_filter_get_feature(int sample,
                                          CCL_FILTER_TILE_INFO,
                                          int m_offset,
                                          int v_offset,
                                          int x,
                                          int y,
                                          ccl_global float *mean,
                                          ccl_global float *variance,
                                          float scale,
                                          int4 rect,
                                          int buffer_pass_stride,
                                          int buffer_denoising_offset)
{
  int xtile = (x < tile_info->x[1]) ? 0 : ((x < tile_info->x[2]) ? 1 : 2);
  int ytile = (y < tile_info->y[1]) ? 0 : ((y < tile_info->y[2]) ? 1 : 2);
  int tile = ytile * 3 + xtile;
  ccl_global float *center_buffer = ((ccl_global float *)ccl_get_tile_buffer(tile)) +
                                    (tile_info->offsets[tile] + y * tile_info->strides[tile] + x) *
                                        buffer_pass_stride +
                                    buffer_denoising_offset;

  int buffer_w = align_up(rect.z - rect.x, 4);
  int idx = (y - rect.y) * buffer_w + (x - rect.x);

  float val = scale * center_buffer[m_offset];
  mean[idx] = val;

  if (v_offset >= 0) {
    if (sample > 1) {
      /* Approximate variance as E[x^2] - 1/N * (E[x])^2, since online variance
       * update does not work efficiently with atomics in the kernel. */
      variance[idx] = max(
          0.0f, (center_buffer[v_offset] - val * val * sample) / (sample * (sample - 1)));
    }
    else {
      /* Can't compute variance with single sample, just set it very high. */
      variance[idx] = 1e10f;
    }
  }
}

ccl_device void kernel_filter_write_feature(int sample,
                                            int x,
                                            int y,
                                            int4 buffer_params,
                                            ccl_global float *from,
                                            ccl_global float *buffer,
                                            int out_offset,
                                            int4 rect)
{
  ccl_global float *combined_buffer = buffer + (y * buffer_params.y + x + buffer_params.x) *
                                                   buffer_params.z;

  int buffer_w = align_up(rect.z - rect.x, 4);
  int idx = (y - rect.y) * buffer_w + (x - rect.x);

  combined_buffer[out_offset] = from[idx];
}

#define GET_COLOR(image) \
  make_float3(image[idx], image[idx + pass_stride], image[idx + 2 * pass_stride])
#define SET_COLOR(image, color) \
  image[idx] = color.x; \
  image[idx + pass_stride] = color.y; \
  image[idx + 2 * pass_stride] = color.z

ccl_device void kernel_filter_detect_outliers(int x,
                                              int y,
                                              ccl_global float *in,
                                              ccl_global float *variance_out,
                                              ccl_global float *depth,
                                              ccl_global float *image_out,
                                              int4 rect,
                                              int pass_stride)
{
  int buffer_w = align_up(rect.z - rect.x, 4);

  ccl_global float *image_in = in;
  ccl_global float *variance_in = in + 3 * pass_stride;

  int n = 0;
  float values[25];
  float pixel_variance, max_variance = 0.0f;
  for (int y1 = max(y - 2, rect.y); y1 < min(y + 3, rect.w); y1++) {
    for (int x1 = max(x - 2, rect.x); x1 < min(x + 3, rect.z); x1++) {
      int idx = (y1 - rect.y) * buffer_w + (x1 - rect.x);
      float3 color = GET_COLOR(image_in);
      color = max(color, make_float3(0.0f, 0.0f, 0.0f));
      float L = average(color);

      /* Find the position of L. */
      int i;
      for (i = 0; i < n; i++) {
        if (values[i] > L)
          break;
      }
      /* Make space for L by shifting all following values to the right. */
      for (int j = n; j > i; j--) {
        values[j] = values[j - 1];
      }
      /* Insert L. */
      values[i] = L;
      n++;

      float3 pixel_var = GET_COLOR(variance_in);
      float var = average(pixel_var);
      if ((x1 == x) && (y1 == y)) {
        pixel_variance = (pixel_var.x < 0.0f || pixel_var.y < 0.0f || pixel_var.z < 0.0f) ? -1.0f :
                                                                                            var;
      }
      else {
        max_variance = max(max_variance, var);
      }
    }
  }

  max_variance += 1e-4f;

  int idx = (y - rect.y) * buffer_w + (x - rect.x);

  float3 color = GET_COLOR(image_in);
  float3 variance = GET_COLOR(variance_in);
  color = max(color, make_float3(0.0f, 0.0f, 0.0f));
  variance = max(variance, make_float3(0.0f, 0.0f, 0.0f));

  float L = average(color);

  float ref = 2.0f * values[(int)(n * 0.75f)];

  /* Slightly offset values to avoid false positives in (almost) black areas. */
  max_variance += 1e-5f;
  ref -= 1e-5f;

  if (L > ref) {
    /* The pixel appears to be an outlier.
     * However, it may just be a legitimate highlight. Therefore, it is checked how likely it is
     * that the pixel should actually be at the reference value: If the reference is within the
     * 3-sigma interval, the pixel is assumed to be a statistical outlier. Otherwise, it is very
     * unlikely that the pixel should be darker, which indicates a legitimate highlight.
     */

    if (pixel_variance < 0.0f || pixel_variance > 9.0f * max_variance) {
      depth[idx] = -depth[idx];
      color *= ref / L;
      variance = make_float3(max_variance, max_variance, max_variance);
    }
    else {
      float stddev = sqrtf(pixel_variance);
      if (L - 3 * stddev < ref) {
        /* The pixel is an outlier, so negate the depth value to mark it as one.
         * Also, scale its brightness down to the outlier threshold to avoid trouble with the NLM
         * weights. */
        depth[idx] = -depth[idx];
        float fac = ref / L;
        color *= fac;
        variance *= sqr(fac);
      }
    }
  }

  /* Apply log(1+x) transform to compress highlights and avoid halos in the denoised results.
   * Variance is transformed accordingly - the derivative of the transform is 1/(1+x), so we
   * scale by the square of that (since we have variance instead of standard deviation). */
  color = color_highlight_compress(color, &variance);

  SET_COLOR(image_out, color);
  SET_COLOR(variance_out, variance);
}

#undef GET_COLOR
#undef SET_COLOR

/* Combine A/B buffers.
 * Calculates the combined mean and the buffer variance. */
ccl_device void kernel_filter_combine_halves(int x,
                                             int y,
                                             ccl_global float *mean,
                                             ccl_global float *variance,
                                             ccl_global float *a,
                                             ccl_global float *b,
                                             int4 rect,
                                             int r)
{
  int buffer_w = align_up(rect.z - rect.x, 4);
  int idx = (y - rect.y) * buffer_w + (x - rect.x);

  if (mean)
    mean[idx] = 0.5f * (a[idx] + b[idx]);
  if (variance) {
    if (r == 0)
      variance[idx] = 0.25f * (a[idx] - b[idx]) * (a[idx] - b[idx]);
    else {
      variance[idx] = 0.0f;
      float values[25];
      int numValues = 0;
      for (int py = max(y - r, rect.y); py < min(y + r + 1, rect.w); py++) {
        for (int px = max(x - r, rect.x); px < min(x + r + 1, rect.z); px++) {
          int pidx = (py - rect.y) * buffer_w + (px - rect.x);
          values[numValues++] = 0.25f * (a[pidx] - b[pidx]) * (a[pidx] - b[pidx]);
        }
      }
      /* Insertion-sort the variances (fast enough for 25 elements). */
      for (int i = 1; i < numValues; i++) {
        float v = values[i];
        int j;
        for (j = i - 1; j >= 0 && values[j] > v; j--)
          values[j + 1] = values[j];
        values[j + 1] = v;
      }
      variance[idx] = values[(7 * numValues) / 8];
    }
  }
}

CCL_NAMESPACE_END