Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curve_intersect.h « geom « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e1a1f9c02c553f669ac90f757127c2e07a47f8f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2009-2020 Intel Corporation. Adapted from Embree with
 * with modifications. */

#pragma once

CCL_NAMESPACE_BEGIN

/* Curve primitive intersection functions.
 *
 * The code here was adapted from curve_intersector_sweep.h in Embree, to get
 * an exact match between Embree CPU ray-tracing and our GPU ray-tracing. */

#define CURVE_NUM_BEZIER_SUBDIVISIONS 3
#define CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE (CURVE_NUM_BEZIER_SUBDIVISIONS + 1)
#define CURVE_NUM_BEZIER_STEPS 2
#define CURVE_NUM_JACOBIAN_ITERATIONS 5

#ifdef __HAIR__

/* Catmull-rom curve evaluation. */

ccl_device_inline float4 catmull_rom_basis_eval(const float4 curve[4], float u)
{
  const float t = u;
  const float s = 1.0f - u;
  const float n0 = -t * s * s;
  const float n1 = 2.0f + t * t * (3.0f * t - 5.0f);
  const float n2 = 2.0f + s * s * (3.0f * s - 5.0f);
  const float n3 = -s * t * t;
  return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
}

ccl_device_inline float4 catmull_rom_basis_derivative(const float4 curve[4], float u)
{
  const float t = u;
  const float s = 1.0f - u;
  const float n0 = -s * s + 2.0f * s * t;
  const float n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t;
  const float n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s;
  const float n3 = -2.0f * s * t + t * t;
  return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
}

ccl_device_inline float4 catmull_rom_basis_derivative2(const float4 curve[4], float u)
{

  const float t = u;
  const float n0 = -3.0f * t + 2.0f;
  const float n1 = 9.0f * t - 5.0f;
  const float n2 = -9.0f * t + 4.0f;
  const float n3 = 3.0f * t - 1.0f;
  return (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
}

/* Thick Curve */

ccl_device_inline float3 dnormalize(const float3 p, const float3 dp)
{
  const float pp = dot(p, p);
  const float pdp = dot(p, dp);
  return (pp * dp - pdp * p) / (pp * sqrtf(pp));
}

ccl_device_inline float sqr_point_to_line_distance(const float3 PmQ0, const float3 Q1mQ0)
{
  const float3 N = cross(PmQ0, Q1mQ0);
  const float3 D = Q1mQ0;
  return dot(N, N) / dot(D, D);
}

ccl_device_inline bool cylinder_intersect(const float3 cylinder_start,
                                          const float3 cylinder_end,
                                          const float cylinder_radius,
                                          const float3 ray_dir,
                                          ccl_private float2 *t_o,
                                          ccl_private float *u0_o,
                                          ccl_private float3 *Ng0_o,
                                          ccl_private float *u1_o,
                                          ccl_private float3 *Ng1_o)
{
  /* Calculate quadratic equation to solve. */
  const float rl = 1.0f / len(cylinder_end - cylinder_start);
  const float3 P0 = cylinder_start, dP = (cylinder_end - cylinder_start) * rl;
  const float3 O = -P0, dO = ray_dir;

  const float dOdO = dot(dO, dO);
  const float OdO = dot(dO, O);
  const float OO = dot(O, O);
  const float dOz = dot(dP, dO);
  const float Oz = dot(dP, O);

  const float A = dOdO - sqr(dOz);
  const float B = 2.0f * (OdO - dOz * Oz);
  const float C = OO - sqr(Oz) - sqr(cylinder_radius);

  /* We miss the cylinder if determinant is smaller than zero. */
  const float D = B * B - 4.0f * A * C;
  if (!(D >= 0.0f)) {
    *t_o = make_float2(FLT_MAX, -FLT_MAX);
    return false;
  }

  /* Special case for rays that are parallel to the cylinder. */
  const float eps = 16.0f * FLT_EPSILON * max(fabsf(dOdO), fabsf(sqr(dOz)));
  if (fabsf(A) < eps) {
    if (C <= 0.0f) {
      *t_o = make_float2(-FLT_MAX, FLT_MAX);
      return true;
    }
    else {
      *t_o = make_float2(-FLT_MAX, FLT_MAX);
      return false;
    }
  }

  /* Standard case for rays that are not parallel to the cylinder. */
  const float Q = sqrtf(D);
  const float rcp_2A = 1.0f / (2.0f * A);
  const float t0 = (-B - Q) * rcp_2A;
  const float t1 = (-B + Q) * rcp_2A;

  /* Calculates u and Ng for near hit. */
  {
    *u0_o = (t0 * dOz + Oz) * rl;
    const float3 Pr = t0 * ray_dir;
    const float3 Pl = (*u0_o) * (cylinder_end - cylinder_start) + cylinder_start;
    *Ng0_o = Pr - Pl;
  }

  /* Calculates u and Ng for far hit. */
  {
    *u1_o = (t1 * dOz + Oz) * rl;
    const float3 Pr = t1 * ray_dir;
    const float3 Pl = (*u1_o) * (cylinder_end - cylinder_start) + cylinder_start;
    *Ng1_o = Pr - Pl;
  }

  *t_o = make_float2(t0, t1);

  return true;
}

ccl_device_inline float2 half_plane_intersect(const float3 P, const float3 N, const float3 ray_dir)
{
  const float3 O = -P;
  const float3 D = ray_dir;
  const float ON = dot(O, N);
  const float DN = dot(D, N);
  const float min_rcp_input = 1e-18f;
  const bool eps = fabsf(DN) < min_rcp_input;
  const float t = -ON / DN;
  const float lower = (eps || DN < 0.0f) ? -FLT_MAX : t;
  const float upper = (eps || DN > 0.0f) ? FLT_MAX : t;
  return make_float2(lower, upper);
}

ccl_device bool curve_intersect_iterative(const float3 ray_dir,
                                          ccl_private float *ray_tfar,
                                          const float dt,
                                          const float4 curve[4],
                                          float u,
                                          float t,
                                          const bool use_backfacing,
                                          ccl_private Intersection *isect)
{
  const float length_ray_dir = len(ray_dir);

  /* Error of curve evaluations is proportional to largest coordinate. */
  const float4 box_min = min(min(curve[0], curve[1]), min(curve[2], curve[3]));
  const float4 box_max = max(min(curve[0], curve[1]), max(curve[2], curve[3]));
  const float4 box_abs = max(fabs(box_min), fabs(box_max));
  const float P_err = 16.0f * FLT_EPSILON *
                      max(box_abs.x, max(box_abs.y, max(box_abs.z, box_abs.w)));
  const float radius_max = box_max.w;

  for (int i = 0; i < CURVE_NUM_JACOBIAN_ITERATIONS; i++) {
    const float3 Q = ray_dir * t;
    const float3 dQdt = ray_dir;
    const float Q_err = 16.0f * FLT_EPSILON * length_ray_dir * t;

    const float4 P4 = catmull_rom_basis_eval(curve, u);
    const float4 dPdu4 = catmull_rom_basis_derivative(curve, u);

    const float3 P = float4_to_float3(P4);
    const float3 dPdu = float4_to_float3(dPdu4);
    const float radius = P4.w;
    const float dradiusdu = dPdu4.w;

    const float3 ddPdu = float4_to_float3(catmull_rom_basis_derivative2(curve, u));

    const float3 R = Q - P;
    const float len_R = len(R);
    const float R_err = max(Q_err, P_err);
    const float3 dRdu = -dPdu;
    const float3 dRdt = dQdt;

    const float3 T = normalize(dPdu);
    const float3 dTdu = dnormalize(dPdu, ddPdu);
    const float cos_err = P_err / len(dPdu);

    const float f = dot(R, T);
    const float f_err = len_R * P_err + R_err + cos_err * (1.0f + len_R);
    const float dfdu = dot(dRdu, T) + dot(R, dTdu);
    const float dfdt = dot(dRdt, T);

    const float K = dot(R, R) - sqr(f);
    const float dKdu = (dot(R, dRdu) - f * dfdu);
    const float dKdt = (dot(R, dRdt) - f * dfdt);
    const float rsqrt_K = inversesqrtf(K);

    const float g = sqrtf(K) - radius;
    const float g_err = R_err + f_err + 16.0f * FLT_EPSILON * radius_max;
    const float dgdu = dKdu * rsqrt_K - dradiusdu;
    const float dgdt = dKdt * rsqrt_K;

    const float invdet = 1.0f / (dfdu * dgdt - dgdu * dfdt);
    u -= (dgdt * f - dfdt * g) * invdet;
    t -= (-dgdu * f + dfdu * g) * invdet;

    if (fabsf(f) < f_err && fabsf(g) < g_err) {
      t += dt;
      if (!(0.0f <= t && t <= *ray_tfar)) {
        return false; /* Rejects NaNs */
      }
      if (!(u >= 0.0f && u <= 1.0f)) {
        return false; /* Rejects NaNs */
      }

      /* Back-face culling. */
      const float3 R = normalize(Q - P);
      const float3 U = dradiusdu * R + dPdu;
      const float3 V = cross(dPdu, R);
      const float3 Ng = cross(V, U);
      if (!use_backfacing && dot(ray_dir, Ng) > 0.0f) {
        return false;
      }

      /* Record intersection. */
      *ray_tfar = t;
      isect->t = t;
      isect->u = u;
      isect->v = 0.0f;

      return true;
    }
  }
  return false;
}

ccl_device bool curve_intersect_recursive(const float3 ray_orig,
                                          const float3 ray_dir,
                                          float ray_tfar,
                                          float4 curve[4],
                                          ccl_private Intersection *isect)
{
  /* Move ray closer to make intersection stable. */
  const float3 center = float4_to_float3(0.25f * (curve[0] + curve[1] + curve[2] + curve[3]));
  const float dt = dot(center - ray_orig, ray_dir) / dot(ray_dir, ray_dir);
  const float3 ref = ray_orig + ray_dir * dt;
  const float4 ref4 = make_float4(ref.x, ref.y, ref.z, 0.0f);
  curve[0] -= ref4;
  curve[1] -= ref4;
  curve[2] -= ref4;
  curve[3] -= ref4;

  const bool use_backfacing = false;
  const float step_size = 1.0f / (float)(CURVE_NUM_BEZIER_STEPS);

  int depth = 0;

  /* todo: optimize stack for GPU somehow? Possibly some bitflags are enough, and
   * u0/u1 can be derived from the depth. */
  struct {
    float u0, u1;
    int i;
  } stack[CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE];

  bool found = false;

  float u0 = 0.0f;
  float u1 = 1.0f;
  int i = 0;

  while (1) {
    for (; i < CURVE_NUM_BEZIER_STEPS; i++) {
      const float step = i * step_size;

      /* Subdivide curve. */
      const float dscale = (u1 - u0) * (1.0f / 3.0f) * step_size;
      const float vu0 = mix(u0, u1, step);
      const float vu1 = mix(u0, u1, step + step_size);

      const float4 P0 = catmull_rom_basis_eval(curve, vu0);
      const float4 dP0du = dscale * catmull_rom_basis_derivative(curve, vu0);
      const float4 P3 = catmull_rom_basis_eval(curve, vu1);
      const float4 dP3du = dscale * catmull_rom_basis_derivative(curve, vu1);

      const float4 P1 = P0 + dP0du;
      const float4 P2 = P3 - dP3du;

      /* Calculate bounding cylinders. */
      const float rr1 = sqr_point_to_line_distance(float4_to_float3(dP0du),
                                                   float4_to_float3(P3 - P0));
      const float rr2 = sqr_point_to_line_distance(float4_to_float3(dP3du),
                                                   float4_to_float3(P3 - P0));
      const float maxr12 = sqrtf(max(rr1, rr2));
      const float one_plus_ulp = 1.0f + 2.0f * FLT_EPSILON;
      const float one_minus_ulp = 1.0f - 2.0f * FLT_EPSILON;
      float r_outer = max(max(P0.w, P1.w), max(P2.w, P3.w)) + maxr12;
      float r_inner = min(min(P0.w, P1.w), min(P2.w, P3.w)) - maxr12;
      r_outer = one_plus_ulp * r_outer;
      r_inner = max(0.0f, one_minus_ulp * r_inner);
      bool valid = true;

      /* Intersect with outer cylinder. */
      float2 tc_outer;
      float u_outer0, u_outer1;
      float3 Ng_outer0, Ng_outer1;
      valid = cylinder_intersect(float4_to_float3(P0),
                                 float4_to_float3(P3),
                                 r_outer,
                                 ray_dir,
                                 &tc_outer,
                                 &u_outer0,
                                 &Ng_outer0,
                                 &u_outer1,
                                 &Ng_outer1);
      if (!valid) {
        continue;
      }

      /* Intersect with cap-planes. */
      float2 tp = make_float2(-dt, ray_tfar - dt);
      tp = make_float2(max(tp.x, tc_outer.x), min(tp.y, tc_outer.y));
      const float2 h0 = half_plane_intersect(
          float4_to_float3(P0), float4_to_float3(dP0du), ray_dir);
      tp = make_float2(max(tp.x, h0.x), min(tp.y, h0.y));
      const float2 h1 = half_plane_intersect(
          float4_to_float3(P3), -float4_to_float3(dP3du), ray_dir);
      tp = make_float2(max(tp.x, h1.x), min(tp.y, h1.y));
      valid = tp.x <= tp.y;
      if (!valid) {
        continue;
      }

      /* Clamp and correct u parameter. */
      u_outer0 = clamp(u_outer0, 0.0f, 1.0f);
      u_outer1 = clamp(u_outer1, 0.0f, 1.0f);
      u_outer0 = mix(u0, u1, (step + u_outer0) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));
      u_outer1 = mix(u0, u1, (step + u_outer1) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));

      /* Intersect with inner cylinder. */
      float2 tc_inner;
      float u_inner0, u_inner1;
      float3 Ng_inner0, Ng_inner1;
      const bool valid_inner = cylinder_intersect(float4_to_float3(P0),
                                                  float4_to_float3(P3),
                                                  r_inner,
                                                  ray_dir,
                                                  &tc_inner,
                                                  &u_inner0,
                                                  &Ng_inner0,
                                                  &u_inner1,
                                                  &Ng_inner1);

      /* At the unstable area we subdivide deeper. */
#  if 0
      const bool unstable0 = (!valid_inner) |
                             (fabsf(dot(normalize(ray_dir), normalize(Ng_inner0))) < 0.3f);
      const bool unstable1 = (!valid_inner) |
                             (fabsf(dot(normalize(ray_dir), normalize(Ng_inner1))) < 0.3f);
#  else
      /* On the GPU appears to be a little faster if always enabled. */
      (void)valid_inner;

      const bool unstable0 = true;
      const bool unstable1 = true;
#  endif

      /* Subtract the inner interval from the current hit interval. */
      float2 tp0 = make_float2(tp.x, min(tp.y, tc_inner.x));
      float2 tp1 = make_float2(max(tp.x, tc_inner.y), tp.y);
      bool valid0 = valid && (tp0.x <= tp0.y);
      bool valid1 = valid && (tp1.x <= tp1.y);
      if (!(valid0 || valid1)) {
        continue;
      }

      /* Process one or two hits. */
      bool recurse = false;
      if (valid0) {
        const int termDepth = unstable0 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
                                          CURVE_NUM_BEZIER_SUBDIVISIONS;
        if (depth >= termDepth) {
          found |= curve_intersect_iterative(
              ray_dir, &ray_tfar, dt, curve, u_outer0, tp0.x, use_backfacing, isect);
        }
        else {
          recurse = true;
        }
      }

      if (valid1 && (tp1.x + dt <= ray_tfar)) {
        const int termDepth = unstable1 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
                                          CURVE_NUM_BEZIER_SUBDIVISIONS;
        if (depth >= termDepth) {
          found |= curve_intersect_iterative(
              ray_dir, &ray_tfar, dt, curve, u_outer1, tp1.y, use_backfacing, isect);
        }
        else {
          recurse = true;
        }
      }

      if (recurse) {
        stack[depth].u0 = u0;
        stack[depth].u1 = u1;
        stack[depth].i = i + 1;
        depth++;

        u0 = vu0;
        u1 = vu1;
        i = -1;
      }
    }

    if (depth > 0) {
      depth--;
      u0 = stack[depth].u0;
      u1 = stack[depth].u1;
      i = stack[depth].i;
    }
    else {
      break;
    }
  }

  return found;
}

/* Ribbons */

ccl_device_inline bool cylinder_culling_test(const float2 p1, const float2 p2, const float r)
{
  /* Performs culling against a cylinder. */
  const float2 dp = p2 - p1;
  const float num = dp.x * p1.y - dp.y * p1.x;
  const float den2 = dot(dp, dp);
  return num * num <= r * r * den2;
}

/**
 * Intersects a ray with a quad with back-face culling
 * enabled. The quad v0,v1,v2,v3 is split into two triangles
 * v0,v1,v3 and v2,v3,v1. The edge v1,v2 decides which of the two
 * triangles gets intersected.
 */
ccl_device_inline bool ribbon_intersect_quad(const float ray_tfar,
                                             const float3 quad_v0,
                                             const float3 quad_v1,
                                             const float3 quad_v2,
                                             const float3 quad_v3,
                                             ccl_private float *u_o,
                                             ccl_private float *v_o,
                                             ccl_private float *t_o)
{
  /* Calculate vertices relative to ray origin? */
  const float3 O = make_float3(0.0f, 0.0f, 0.0f);
  const float3 D = make_float3(0.0f, 0.0f, 1.0f);
  const float3 va = quad_v0 - O;
  const float3 vb = quad_v1 - O;
  const float3 vc = quad_v2 - O;
  const float3 vd = quad_v3 - O;

  const float3 edb = vb - vd;
  const float WW = dot(cross(vd, edb), D);
  const float3 v0 = (WW <= 0.0f) ? va : vc;
  const float3 v1 = (WW <= 0.0f) ? vb : vd;
  const float3 v2 = (WW <= 0.0f) ? vd : vb;

  /* Calculate edges? */
  const float3 e0 = v2 - v0;
  const float3 e1 = v0 - v1;

  /* perform edge tests */
  const float U = dot(cross(v0, e0), D);
  const float V = dot(cross(v1, e1), D);
  if (!(max(U, V) <= 0.0f)) {
    return false;
  }

  /* Calculate geometry normal and denominator? */
  const float3 Ng = cross(e1, e0);
  const float den = dot(Ng, D);
  const float rcpDen = 1.0f / den;

  /* Perform depth test? */
  const float t = rcpDen * dot(v0, Ng);
  if (!(0.0f <= t && t <= ray_tfar)) {
    return false;
  }

  /* Avoid division by 0? */
  if (!(den != 0.0f)) {
    return false;
  }

  /* Update hit information? */
  *t_o = t;
  *u_o = U * rcpDen;
  *v_o = V * rcpDen;
  *u_o = (WW <= 0.0f) ? *u_o : 1.0f - *u_o;
  *v_o = (WW <= 0.0f) ? *v_o : 1.0f - *v_o;
  return true;
}

ccl_device_inline void ribbon_ray_space(const float3 ray_dir, float3 ray_space[3])
{
  const float3 dx0 = make_float3(0, ray_dir.z, -ray_dir.y);
  const float3 dx1 = make_float3(-ray_dir.z, 0, ray_dir.x);
  ray_space[0] = normalize(dot(dx0, dx0) > dot(dx1, dx1) ? dx0 : dx1);
  ray_space[1] = normalize(cross(ray_dir, ray_space[0]));
  ray_space[2] = ray_dir;
}

ccl_device_inline float4 ribbon_to_ray_space(const float3 ray_space[3],
                                             const float3 ray_org,
                                             const float4 P4)
{
  float3 P = float4_to_float3(P4) - ray_org;
  return make_float4(dot(ray_space[0], P), dot(ray_space[1], P), dot(ray_space[2], P), P4.w);
}

ccl_device_inline bool ribbon_intersect(const float3 ray_org,
                                        const float3 ray_dir,
                                        float ray_tfar,
                                        const int N,
                                        float4 curve[4],
                                        ccl_private Intersection *isect)
{
  /* Transform control points into ray space. */
  float3 ray_space[3];
  ribbon_ray_space(ray_dir, ray_space);

  curve[0] = ribbon_to_ray_space(ray_space, ray_org, curve[0]);
  curve[1] = ribbon_to_ray_space(ray_space, ray_org, curve[1]);
  curve[2] = ribbon_to_ray_space(ray_space, ray_org, curve[2]);
  curve[3] = ribbon_to_ray_space(ray_space, ray_org, curve[3]);

  const float4 mx = max(max(fabs(curve[0]), fabs(curve[1])), max(fabs(curve[2]), fabs(curve[3])));
  const float eps = 4.0f * FLT_EPSILON * max(max(mx.x, mx.y), max(mx.z, mx.w));
  const float step_size = 1.0f / (float)N;

  /* Evaluate first point and radius scaled normal direction. */
  float4 p0 = catmull_rom_basis_eval(curve, 0.0f);
  float3 dp0dt = float4_to_float3(catmull_rom_basis_derivative(curve, 0.0f));
  if (max3(fabs(dp0dt)) < eps) {
    const float4 p1 = catmull_rom_basis_eval(curve, step_size);
    dp0dt = float4_to_float3(p1 - p0);
  }
  float3 wn0 = normalize(make_float3(dp0dt.y, -dp0dt.x, 0.0f)) * p0.w;

  /* Evaluate the bezier curve. */
  for (int i = 0; i < N; i++) {
    const float u = i * step_size;
    const float4 p1 = catmull_rom_basis_eval(curve, u + step_size);
    const bool valid = cylinder_culling_test(
        make_float2(p0.x, p0.y), make_float2(p1.x, p1.y), max(p0.w, p1.w));

    /* Evaluate next point. */
    float3 dp1dt = float4_to_float3(catmull_rom_basis_derivative(curve, u + step_size));
    dp1dt = (max3(fabs(dp1dt)) < eps) ? float4_to_float3(p1 - p0) : dp1dt;
    const float3 wn1 = normalize(make_float3(dp1dt.y, -dp1dt.x, 0.0f)) * p1.w;

    if (valid) {
      /* Construct quad coordinates. */
      const float3 lp0 = float4_to_float3(p0) + wn0;
      const float3 lp1 = float4_to_float3(p1) + wn1;
      const float3 up0 = float4_to_float3(p0) - wn0;
      const float3 up1 = float4_to_float3(p1) - wn1;

      /* Intersect quad. */
      float vu, vv, vt;
      bool valid0 = ribbon_intersect_quad(ray_tfar, lp0, lp1, up1, up0, &vu, &vv, &vt);

      if (valid0) {
        /* ignore self intersections */
        const float avoidance_factor = 2.0f;
        if (avoidance_factor != 0.0f) {
          float r = mix(p0.w, p1.w, vu);
          valid0 = vt > avoidance_factor * r;
        }

        if (valid0) {
          vv = 2.0f * vv - 1.0f;

          /* Record intersection. */
          ray_tfar = vt;
          isect->t = vt;
          isect->u = u + vu * step_size;
          isect->v = vv;
          return true;
        }
      }
    }

    /* Store point for next step. */
    p0 = p1;
    wn0 = wn1;
  }
  return false;
}

ccl_device_forceinline bool curve_intersect(KernelGlobals kg,
                                            ccl_private Intersection *isect,
                                            const float3 P,
                                            const float3 dir,
                                            const float tmax,
                                            int object,
                                            int prim,
                                            float time,
                                            int type)
{
  const bool is_motion = (type & PRIMITIVE_MOTION);

  KernelCurve kcurve = kernel_tex_fetch(__curves, prim);

  int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(type);
  int k1 = k0 + 1;
  int ka = max(k0 - 1, kcurve.first_key);
  int kb = min(k1 + 1, kcurve.first_key + kcurve.num_keys - 1);

  float4 curve[4];
  if (!is_motion) {
    curve[0] = kernel_tex_fetch(__curve_keys, ka);
    curve[1] = kernel_tex_fetch(__curve_keys, k0);
    curve[2] = kernel_tex_fetch(__curve_keys, k1);
    curve[3] = kernel_tex_fetch(__curve_keys, kb);
  }
  else {
    motion_curve_keys(kg, object, prim, time, ka, k0, k1, kb, curve);
  }

  if (type & PRIMITIVE_CURVE_RIBBON) {
    /* todo: adaptive number of subdivisions could help performance here. */
    const int subdivisions = kernel_data.bvh.curve_subdivisions;
    if (ribbon_intersect(P, dir, tmax, subdivisions, curve, isect)) {
      isect->prim = prim;
      isect->object = object;
      isect->type = type;
      return true;
    }

    return false;
  }
  else {
    if (curve_intersect_recursive(P, dir, tmax, curve, isect)) {
      isect->prim = prim;
      isect->object = object;
      isect->type = type;
      return true;
    }

    return false;
  }
}

ccl_device_inline void curve_shader_setup(KernelGlobals kg,
                                          ccl_private ShaderData *sd,
                                          float3 P,
                                          float3 D,
                                          float t,
                                          const int isect_object,
                                          const int isect_prim)
{
  if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
    const Transform tfm = object_get_inverse_transform(kg, sd);

    P = transform_point(&tfm, P);
    D = transform_direction(&tfm, D * t);
    D = safe_normalize_len(D, &t);
  }

  KernelCurve kcurve = kernel_tex_fetch(__curves, isect_prim);

  int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
  int k1 = k0 + 1;
  int ka = max(k0 - 1, kcurve.first_key);
  int kb = min(k1 + 1, kcurve.first_key + kcurve.num_keys - 1);

  float4 P_curve[4];

  if (!(sd->type & PRIMITIVE_MOTION)) {
    P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
    P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
    P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
    P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
  }
  else {
    motion_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
  }

  P = P + D * t;

  const float4 dPdu4 = catmull_rom_basis_derivative(P_curve, sd->u);
  const float3 dPdu = float4_to_float3(dPdu4);

  if (sd->type & PRIMITIVE_CURVE_RIBBON) {
    /* Rounded smooth normals for ribbons, to approximate thick curve shape. */
    const float3 tangent = normalize(dPdu);
    const float3 bitangent = normalize(cross(tangent, -D));
    const float sine = sd->v;
    const float cosine = safe_sqrtf(1.0f - sine * sine);

    sd->N = normalize(sine * bitangent - cosine * normalize(cross(tangent, bitangent)));
#  if 0
    /* This approximates the position and geometric normal of a thick curve too,
     * but gives too many issues with wrong self intersections. */
    const float dPdu_radius = dPdu4.w;
    sd->Ng = sd->N;
    P += sd->N * dPdu_radius;
#  endif
  }
  else {
    /* Thick curves, compute normal using direction from inside the curve.
     * This could be optimized by recording the normal in the intersection,
     * however for Optix this would go beyond the size of the payload. */
    /* NOTE: It is possible that P will be the same as P_inside (precision issues, or very small
     * radius). In this case use the view direction to approximate the normal. */
    const float3 P_inside = float4_to_float3(catmull_rom_basis_eval(P_curve, sd->u));
    const float3 N = (!isequal_float3(P, P_inside)) ? normalize(P - P_inside) : -sd->I;

    sd->N = N;
    sd->v = 0.0f;
  }

#  ifdef __DPDU__
  /* dPdu/dPdv */
  sd->dPdu = dPdu;
#  endif

  /* Convert to world space. */
  if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
    object_position_transform_auto(kg, sd, &P);
    object_normal_transform_auto(kg, sd, &sd->N);
    object_dir_transform_auto(kg, sd, &sd->dPdu);
  }

  sd->P = P;
  sd->Ng = (sd->type & PRIMITIVE_CURVE_RIBBON) ? sd->I : sd->N;
  sd->dPdv = cross(sd->dPdu, sd->Ng);
  sd->shader = kernel_tex_fetch(__curves, sd->prim).shader_id;
}

#endif

CCL_NAMESPACE_END