Welcome to mirror list, hosted at ThFree Co, Russian Federation.

geom_curve_intersect.h « geom « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7a770470150d71c3a9a6011b92caf125076d9393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Curve primitive intersection functions. */

#ifdef __HAIR__

#  ifdef __KERNEL_SSE2__
ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
{
  return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
}
#  endif

/* On CPU pass P and dir by reference to aligned vector. */
ccl_device_forceinline bool cardinal_curve_intersect(KernelGlobals *kg,
                                                     Intersection *isect,
                                                     const float3 ccl_ref P,
                                                     const float3 ccl_ref dir,
                                                     uint visibility,
                                                     int object,
                                                     int curveAddr,
                                                     float time,
                                                     int type)
{
  const bool is_curve_primitive = (type & PRIMITIVE_CURVE);

#  ifndef __KERNEL_OPTIX__ /* see OptiX motion flag OPTIX_MOTION_FLAG_[START|END]_VANISH */
  if (!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
    const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
    if (time < prim_time.x || time > prim_time.y) {
      return false;
    }
  }
#  endif

  int segment = PRIMITIVE_UNPACK_SEGMENT(type);
  float epsilon = 0.0f;
  float r_st, r_en;

  int depth = kernel_data.curve.subdivisions;
  int flags = kernel_data.curve.curveflags;
  int prim = kernel_tex_fetch(__prim_index, curveAddr);

#  ifdef __KERNEL_SSE2__
  ssef vdir = load4f(dir);
  ssef vcurve_coef[4];
  const float3 *curve_coef = (float3 *)vcurve_coef;

  {
    ssef dtmp = vdir * vdir;
    ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
    ssef rd_ss = load1f_first(1.0f) / d_ss;

    ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
    int2 &v00 = (int2 &)v00vec;

    int k0 = v00.x + segment;
    int k1 = k0 + 1;
    int ka = max(k0 - 1, v00.x);
    int kb = min(k1 + 1, v00.x + v00.y - 1);

#    if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && \
        (!defined(_MSC_VER) || _MSC_VER > 1800)
    avxf P_curve_0_1, P_curve_2_3;
    if (is_curve_primitive) {
      P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
      P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
    }
    else {
      int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
      motion_cardinal_curve_keys_avx(
          kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1, &P_curve_2_3);
    }
#    else  /* __KERNEL_AVX2__ */
    ssef P_curve[4];

    if (is_curve_primitive) {
      P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
      P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
      P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
      P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
    }
    else {
      int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
      motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4 *)&P_curve);
    }
#    endif /* __KERNEL_AVX2__ */

    ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
    ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
    ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
    ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
    ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));

    ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
    ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
    ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);

#    if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && \
        (!defined(_MSC_VER) || _MSC_VER > 1800)
    const avxf vPP = _mm256_broadcast_ps(&P.m128);
    const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
    const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
    const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);

    const avxf p01 = madd(
        shuffle<0>(P_curve_0_1 - vPP),
        htfm00,
        madd(shuffle<1>(P_curve_0_1 - vPP), htfm11, shuffle<2>(P_curve_0_1 - vPP) * htfm22));
    const avxf p23 = madd(
        shuffle<0>(P_curve_2_3 - vPP),
        htfm00,
        madd(shuffle<1>(P_curve_2_3 - vPP), htfm11, shuffle<2>(P_curve_2_3 - vPP) * htfm22));

    const ssef p0 = _mm256_castps256_ps128(p01);
    const ssef p1 = _mm256_extractf128_ps(p01, 1);
    const ssef p2 = _mm256_castps256_ps128(p23);
    const ssef p3 = _mm256_extractf128_ps(p23, 1);

    const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
    r_st = ((float4 &)P_curve_1).w;
    const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
    r_en = ((float4 &)P_curve_2).w;
#    else  /* __KERNEL_AVX2__ */
    ssef htfm[] = {htfm0, htfm1, htfm2};
    ssef vP = load4f(P);
    ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
    ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
    ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
    ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);

    r_st = ((float4 &)P_curve[1]).w;
    r_en = ((float4 &)P_curve[2]).w;
#    endif /* __KERNEL_AVX2__ */

    float fc = 0.71f;
    ssef vfc = ssef(fc);
    ssef vfcxp3 = vfc * p3;

    vcurve_coef[0] = p1;
    vcurve_coef[1] = vfc * (p2 - p0);
    vcurve_coef[2] = madd(
        ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
    vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
  }
#  else
  float3 curve_coef[4];

  /* curve Intersection check */
  /* obtain curve parameters */
  {
    /* ray transform created - this should be created at beginning of intersection loop */
    Transform htfm;
    float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
    htfm = make_transform(dir.z / d,
                          0,
                          -dir.x / d,
                          0,
                          -dir.x * dir.y / d,
                          d,
                          -dir.y * dir.z / d,
                          0,
                          dir.x,
                          dir.y,
                          dir.z,
                          0);

    float4 v00 = kernel_tex_fetch(__curves, prim);

    int k0 = __float_as_int(v00.x) + segment;
    int k1 = k0 + 1;

    int ka = max(k0 - 1, __float_as_int(v00.x));
    int kb = min(k1 + 1, __float_as_int(v00.x) + __float_as_int(v00.y) - 1);

    float4 P_curve[4];

    if (is_curve_primitive) {
      P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
      P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
      P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
      P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
    }
    else {
      int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
      motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
    }

    float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
    float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
    float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
    float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);

    float fc = 0.71f;
    curve_coef[0] = p1;
    curve_coef[1] = -fc * p0 + fc * p2;
    curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
    curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
    r_st = P_curve[1].w;
    r_en = P_curve[2].w;
  }
#  endif

  float r_curr = max(r_st, r_en);

  if ((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
    epsilon = 2 * r_curr;

  /* find bounds - this is slow for cubic curves */
  float upper, lower;

  float zextrem[4];
  curvebounds(&lower,
              &upper,
              &zextrem[0],
              &zextrem[1],
              &zextrem[2],
              &zextrem[3],
              curve_coef[0].z,
              curve_coef[1].z,
              curve_coef[2].z,
              curve_coef[3].z);
  if (lower - r_curr > isect->t || upper + r_curr < epsilon)
    return false;

  /* minimum width extension */
  float xextrem[4];
  curvebounds(&lower,
              &upper,
              &xextrem[0],
              &xextrem[1],
              &xextrem[2],
              &xextrem[3],
              curve_coef[0].x,
              curve_coef[1].x,
              curve_coef[2].x,
              curve_coef[3].x);
  if (lower > r_curr || upper < -r_curr)
    return false;

  float yextrem[4];
  curvebounds(&lower,
              &upper,
              &yextrem[0],
              &yextrem[1],
              &yextrem[2],
              &yextrem[3],
              curve_coef[0].y,
              curve_coef[1].y,
              curve_coef[2].y,
              curve_coef[3].y);
  if (lower > r_curr || upper < -r_curr)
    return false;

  /* setup recurrent loop */
  int level = 1 << depth;
  int tree = 0;
  float resol = 1.0f / (float)level;
  bool hit = false;

  /* begin loop */
  while (!(tree >> (depth))) {
    const float i_st = tree * resol;
    const float i_en = i_st + (level * resol);

#  ifdef __KERNEL_SSE2__
    ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
    ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]),
                      vi_st,
                      vcurve_coef[0]);
    ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]),
                      vi_en,
                      vcurve_coef[0]);

    ssef vbmin = min(vp_st, vp_en);
    ssef vbmax = max(vp_st, vp_en);

    float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
    float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
    float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
    float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
#  else
    float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st +
                  curve_coef[0];
    float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en +
                  curve_coef[0];

    float bminx = min(p_st.x, p_en.x);
    float bmaxx = max(p_st.x, p_en.x);
    float bminy = min(p_st.y, p_en.y);
    float bmaxy = max(p_st.y, p_en.y);
    float bminz = min(p_st.z, p_en.z);
    float bmaxz = max(p_st.z, p_en.z);
#  endif

    if (xextrem[0] >= i_st && xextrem[0] <= i_en) {
      bminx = min(bminx, xextrem[1]);
      bmaxx = max(bmaxx, xextrem[1]);
    }
    if (xextrem[2] >= i_st && xextrem[2] <= i_en) {
      bminx = min(bminx, xextrem[3]);
      bmaxx = max(bmaxx, xextrem[3]);
    }
    if (yextrem[0] >= i_st && yextrem[0] <= i_en) {
      bminy = min(bminy, yextrem[1]);
      bmaxy = max(bmaxy, yextrem[1]);
    }
    if (yextrem[2] >= i_st && yextrem[2] <= i_en) {
      bminy = min(bminy, yextrem[3]);
      bmaxy = max(bmaxy, yextrem[3]);
    }
    if (zextrem[0] >= i_st && zextrem[0] <= i_en) {
      bminz = min(bminz, zextrem[1]);
      bmaxz = max(bmaxz, zextrem[1]);
    }
    if (zextrem[2] >= i_st && zextrem[2] <= i_en) {
      bminz = min(bminz, zextrem[3]);
      bmaxz = max(bmaxz, zextrem[3]);
    }

    float r1 = r_st + (r_en - r_st) * i_st;
    float r2 = r_st + (r_en - r_st) * i_en;
    r_curr = max(r1, r2);

    if (bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_curr ||
        bmaxx < -r_curr || bminy > r_curr || bmaxy < -r_curr) {
      /* the bounding box does not overlap the square centered at O */
      tree += level;
      level = tree & -tree;
    }
    else if (level == 1) {

      /* the maximum recursion depth is reached.
       * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
       * dP* is reversed if necessary.*/
      float t = isect->t;
      float u = 0.0f;
      float gd = 0.0f;

      if (flags & CURVE_KN_RIBBONS) {
        float3 tg = (p_en - p_st);
#  ifdef __KERNEL_SSE__
        const float3 tg_sq = tg * tg;
        float w = tg_sq.x + tg_sq.y;
#  else
        float w = tg.x * tg.x + tg.y * tg.y;
#  endif
        if (w == 0) {
          tree++;
          level = tree & -tree;
          continue;
        }
#  ifdef __KERNEL_SSE__
        const float3 p_sttg = p_st * tg;
        w = -(p_sttg.x + p_sttg.y) / w;
#  else
        w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
#  endif
        w = saturate(w);

        /* compute u on the curve segment */
        u = i_st * (1 - w) + i_en * w;
        r_curr = r_st + (r_en - r_st) * u;
        /* compare x-y distances */
        float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u +
                        curve_coef[0];

        float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
        if (dot(tg, dp_st) < 0)
          dp_st *= -1;
        if (dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
          tree++;
          level = tree & -tree;
          continue;
        }
        float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
        if (dot(tg, dp_en) < 0)
          dp_en *= -1;
        if (dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
          tree++;
          level = tree & -tree;
          continue;
        }

        if (p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_curr * r_curr || p_curr.z <= epsilon ||
            isect->t < p_curr.z) {
          tree++;
          level = tree & -tree;
          continue;
        }

        t = p_curr.z;
      }
      else {
        float l = len(p_en - p_st);
        float invl = 1.0f / l;
        float3 tg = (p_en - p_st) * invl;
        gd = (r2 - r1) * invl;
        float difz = -dot(p_st, tg);
        float cyla = 1.0f - (tg.z * tg.z * (1 + gd * gd));
        float invcyla = 1.0f / cyla;
        float halfb = (-p_st.z - tg.z * (difz + gd * (difz * gd + r1)));
        float tcentre = -halfb * invcyla;
        float zcentre = difz + (tg.z * tcentre);
        float3 tdif = -p_st;
        tdif.z += tcentre;
        float tdifz = dot(tdif, tg);
        float tb = 2 * (tdif.z - tg.z * (tdifz + gd * (tdifz * gd + r1)));
        float tc = dot(tdif, tdif) - tdifz * tdifz * (1 + gd * gd) - r1 * r1 - 2 * r1 * tdifz * gd;
        float td = tb * tb - 4 * cyla * tc;
        if (td < 0.0f) {
          tree++;
          level = tree & -tree;
          continue;
        }

        float rootd = sqrtf(td);
        float correction = (-tb - rootd) * 0.5f * invcyla;
        t = tcentre + correction;

        float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
        if (dot(tg, dp_st) < 0)
          dp_st *= -1;
        float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
        if (dot(tg, dp_en) < 0)
          dp_en *= -1;

        if (flags & CURVE_KN_BACKFACING &&
            (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 ||
             isect->t < t || t <= 0.0f)) {
          correction = (-tb + rootd) * 0.5f * invcyla;
          t = tcentre + correction;
        }

        if (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 ||
            isect->t < t || t <= 0.0f) {
          tree++;
          level = tree & -tree;
          continue;
        }

        float w = (zcentre + (tg.z * correction)) * invl;
        w = saturate(w);
        /* compute u on the curve segment */
        u = i_st * (1 - w) + i_en * w;
      }
      /* we found a new intersection */

#  ifdef __VISIBILITY_FLAG__
      /* visibility flag test. we do it here under the assumption
       * that most triangles are culled by node flags */
      if (kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
#  endif
      {
        /* record intersection */
        isect->t = t;
        isect->u = u;
        isect->v = gd;
        isect->prim = curveAddr;
        isect->object = object;
        isect->type = type;
        hit = true;
      }

      tree++;
      level = tree & -tree;
    }
    else {
      /* split the curve into two curves and process */
      level = level >> 1;
    }
  }

  return hit;
}

ccl_device_forceinline bool curve_intersect(KernelGlobals *kg,
                                            Intersection *isect,
                                            float3 P,
                                            float3 direction,
                                            uint visibility,
                                            int object,
                                            int curveAddr,
                                            float time,
                                            int type)
{
  /* define few macros to minimize code duplication for SSE */
#  ifndef __KERNEL_SSE2__
#    define len3_squared(x) len_squared(x)
#    define len3(x) len(x)
#    define dot3(x, y) dot(x, y)
#  endif

  const bool is_curve_primitive = (type & PRIMITIVE_CURVE);

#  ifndef __KERNEL_OPTIX__ /* see OptiX motion flag OPTIX_MOTION_FLAG_[START|END]_VANISH */
  if (!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
    const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
    if (time < prim_time.x || time > prim_time.y) {
      return false;
    }
  }
#  endif

  int segment = PRIMITIVE_UNPACK_SEGMENT(type);
  /* curve Intersection check */
  int flags = kernel_data.curve.curveflags;

  int prim = kernel_tex_fetch(__prim_index, curveAddr);
  float4 v00 = kernel_tex_fetch(__curves, prim);

  int cnum = __float_as_int(v00.x);
  int k0 = cnum + segment;
  int k1 = k0 + 1;

#  ifndef __KERNEL_SSE2__
  float4 P_curve[2];

  if (is_curve_primitive) {
    P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
    P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
  }
  else {
    int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
    motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
  }

  float r1 = P_curve[0].w;
  float r2 = P_curve[1].w;
  float3 p1 = float4_to_float3(P_curve[0]);
  float3 p2 = float4_to_float3(P_curve[1]);

  /* minimum width extension */
  float3 dif = P - p1;
  float3 dif_second = P - p2;

  float3 p21_diff = p2 - p1;
  float3 sphere_dif1 = (dif + dif_second) * 0.5f;
  float3 dir = direction;
  float sphere_b_tmp = dot3(dir, sphere_dif1);
  float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
#  else
  ssef P_curve[2];

  if (is_curve_primitive) {
    P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
    P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
  }
  else {
    int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
    motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4 *)&P_curve);
  }

  ssef r12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
  const ssef vP = load4f(P);
  const ssef dif = vP - P_curve[0];
  const ssef dif_second = vP - P_curve[1];
  float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));

  const ssef p21_diff = P_curve[1] - P_curve[0];
  const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
  const ssef dir = load4f(direction);
  const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
  const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
#  endif

  float mr = max(r1, r2);
  float l = len3(p21_diff);
  float invl = 1.0f / l;
  float sp_r = mr + 0.5f * l;

  float sphere_b = dot3(dir, sphere_dif2);
  float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;

  if (sdisc < 0.0f)
    return false;

    /* obtain parameters and test midpoint distance for suitable modes */
#  ifndef __KERNEL_SSE2__
  float3 tg = p21_diff * invl;
#  else
  const ssef tg = p21_diff * invl;
#  endif
  float gd = (r2 - r1) * invl;

  float dirz = dot3(dir, tg);
  float difz = dot3(dif, tg);

  float a = 1.0f - (dirz * dirz * (1 + gd * gd));

  float halfb = dot3(dir, dif) - dirz * (difz + gd * (difz * gd + r1));

  float tcentre = -halfb / a;
  float zcentre = difz + (dirz * tcentre);

  if ((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
    return false;
  if ((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) &&
      !(flags & CURVE_KN_INTERSECTCORRECTION))
    return false;

    /* test minimum separation */
#  ifndef __KERNEL_SSE2__
  float3 cprod = cross(tg, dir);
  float cprod2sq = len3_squared(cross(tg, dif));
#  else
  const ssef cprod = cross(tg, dir);
  float cprod2sq = len3_squared(cross_zxy(tg, dif));
#  endif
  float cprodsq = len3_squared(cprod);
  float distscaled = dot3(cprod, dif);

  if (cprodsq == 0)
    distscaled = cprod2sq;
  else
    distscaled = (distscaled * distscaled) / cprodsq;

  if (distscaled > mr * mr)
    return false;

    /* calculate true intersection */
#  ifndef __KERNEL_SSE2__
  float3 tdif = dif + tcentre * dir;
#  else
  const ssef tdif = madd(ssef(tcentre), dir, dif);
#  endif
  float tdifz = dot3(tdif, tg);
  float tdifma = tdifz * gd + r1;
  float tb = 2 * (dot3(dir, tdif) - dirz * (tdifz + gd * tdifma));
  float tc = dot3(tdif, tdif) - tdifz * tdifz - tdifma * tdifma;
  float td = tb * tb - 4 * a * tc;

  if (td < 0.0f)
    return false;

  float rootd = 0.0f;
  float correction = 0.0f;
  if (flags & CURVE_KN_ACCURATE) {
    rootd = sqrtf(td);
    correction = ((-tb - rootd) / (2 * a));
  }

  float t = tcentre + correction;

  if (t < isect->t) {

    if (flags & CURVE_KN_INTERSECTCORRECTION) {
      rootd = sqrtf(td);
      correction = ((-tb - rootd) / (2 * a));
      t = tcentre + correction;
    }

    float z = zcentre + (dirz * correction);
    // bool backface = false;

    if (flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
      // backface = true;
      correction = ((-tb + rootd) / (2 * a));
      t = tcentre + correction;
      z = zcentre + (dirz * correction);
    }

    if (t > 0.0f && t < isect->t && z >= 0 && z <= l) {

      if (flags & CURVE_KN_ENCLOSEFILTER) {
        float enc_ratio = 1.01f;
        if ((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
          float a2 = 1.0f - (dirz * dirz * (1 + gd * gd * enc_ratio * enc_ratio));
          float c2 = dot3(dif, dif) - difz * difz * (1 + gd * gd * enc_ratio * enc_ratio) -
                     r1 * r1 * enc_ratio * enc_ratio - 2 * r1 * difz * gd * enc_ratio;
          if (a2 * c2 < 0.0f)
            return false;
        }
      }

#  ifdef __VISIBILITY_FLAG__
      /* visibility flag test. we do it here under the assumption
       * that most triangles are culled by node flags */
      if (kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
#  endif
      {
        /* record intersection */
        isect->t = t;
        isect->u = z * invl;
        isect->v = gd;
        isect->prim = curveAddr;
        isect->object = object;
        isect->type = type;

        return true;
      }
    }
  }

  return false;

#  ifndef __KERNEL_SSE2__
#    undef len3_squared
#    undef len3
#    undef dot3
#  endif
}

ccl_device_inline float3 curve_refine(KernelGlobals *kg,
                                      ShaderData *sd,
                                      const Intersection *isect,
                                      const Ray *ray)
{
  int flag = kernel_data.curve.curveflags;
  float t = isect->t;
  float3 P = ray->P;
  float3 D = ray->D;

  if (isect->object != OBJECT_NONE) {
#  ifdef __OBJECT_MOTION__
    Transform tfm = sd->ob_itfm;
#  else
    Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
#  endif

    P = transform_point(&tfm, P);
    D = transform_direction(&tfm, D * t);
    D = normalize_len(D, &t);
  }

  int prim = kernel_tex_fetch(__prim_index, isect->prim);
  float4 v00 = kernel_tex_fetch(__curves, prim);

  int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
  int k1 = k0 + 1;

  float3 tg;

  if (flag & CURVE_KN_INTERPOLATE) {
    int ka = max(k0 - 1, __float_as_int(v00.x));
    int kb = min(k1 + 1, __float_as_int(v00.x) + __float_as_int(v00.y) - 1);

    float4 P_curve[4];

    if (sd->type & PRIMITIVE_CURVE) {
      P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
      P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
      P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
      P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
    }
    else {
      motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
    }

    float3 p[4];
    p[0] = float4_to_float3(P_curve[0]);
    p[1] = float4_to_float3(P_curve[1]);
    p[2] = float4_to_float3(P_curve[2]);
    p[3] = float4_to_float3(P_curve[3]);

    P = P + D * t;

#  ifdef __UV__
    sd->u = isect->u;
    sd->v = 0.0f;
#  endif

    tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));

    if (kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
      sd->Ng = normalize(-(D - tg * (dot(tg, D))));
    }
    else {
#  ifdef __EMBREE__
      if (kernel_data.bvh.scene) {
        sd->Ng = normalize(isect->Ng);
      }
      else
#  endif
      {
        /* direction from inside to surface of curve */
        float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
        sd->Ng = normalize(P - p_curr);

        /* adjustment for changing radius */
        float gd = isect->v;

        if (gd != 0.0f) {
          sd->Ng = sd->Ng - gd * tg;
          sd->Ng = normalize(sd->Ng);
        }
      }
    }

    /* todo: sometimes the normal is still so that this is detected as
     * backfacing even if cull backfaces is enabled */

    sd->N = sd->Ng;
  }
  else {
    float4 P_curve[2];

    if (sd->type & PRIMITIVE_CURVE) {
      P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
      P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
    }
    else {
      motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
    }

    float l = 1.0f;
    tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);

    P = P + D * t;

    float3 dif = P - float4_to_float3(P_curve[0]);

#  ifdef __UV__
    sd->u = dot(dif, tg) / l;
    sd->v = 0.0f;
#  endif

    if (flag & CURVE_KN_TRUETANGENTGNORMAL) {
      sd->Ng = -(D - tg * dot(tg, D));
      sd->Ng = normalize(sd->Ng);
    }
    else {
      float gd = isect->v;

      /* direction from inside to surface of curve */
      float denom = fmaxf(P_curve[0].w + sd->u * l * gd, 1e-8f);
      sd->Ng = (dif - tg * sd->u * l) / denom;

      /* adjustment for changing radius */
      if (gd != 0.0f) {
        sd->Ng = sd->Ng - gd * tg;
      }

      sd->Ng = normalize(sd->Ng);
    }

    sd->N = sd->Ng;
  }

#  ifdef __DPDU__
  /* dPdu/dPdv */
  sd->dPdu = tg;
  sd->dPdv = cross(tg, sd->Ng);
#  endif

  if (isect->object != OBJECT_NONE) {
#  ifdef __OBJECT_MOTION__
    Transform tfm = sd->ob_tfm;
#  else
    Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
#  endif

    P = transform_point(&tfm, P);
  }

  return P;
}

#endif

CCL_NAMESPACE_END