Welcome to mirror list, hosted at ThFree Co, Russian Federation.

geom_motion_triangle.h « geom « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fe0cd0c25829f0161cb90251252a653cbda22845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* Motion Triangle Primitive
 *
 * These are stored as regular triangles, plus extra positions and normals at
 * times other than the frame center. Computing the triangle vertex positions
 * or normals at a given ray time is a matter of interpolation of the two steps
 * between which the ray time lies.
 *
 * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
 * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
 */

CCL_NAMESPACE_BEGIN

/* TODO(sergey): Find a proper place for that. */
ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg,
                                                ShaderData *sd,
                                                const Intersection *isect,
                                                const Ray *ray,
                                                float3 verts[3]);

#ifdef __SUBSURFACE__
#  if defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86))
ccl_device_noinline
#  else
ccl_device_inline
#  endif
float3 motion_triangle_refine_subsurface(KernelGlobals *kg,
                                         ShaderData *sd,
                                         const Intersection *isect,
                                         const Ray *ray,
                                         float3 verts[3]);
#endif  /* __SUBSURFACE__ */

/* Time interpolation of vertex positions and normals */

ccl_device_inline int find_attribute_motion(KernelGlobals *kg, int object, uint id, AttributeElement *elem)
{
	/* todo: find a better (faster) solution for this, maybe store offset per object */
	uint attr_offset = object*kernel_data.bvh.attributes_map_stride;
	uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
	
	while(attr_map.x != id) {
		attr_offset += ATTR_PRIM_TYPES;
		attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
	}

	*elem = (AttributeElement)attr_map.y;
	
	/* return result */
	return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}

ccl_device_inline void motion_triangle_verts_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 verts[3])
{
	if(step == numsteps) {
		/* center step: regular vertex location */
		verts[0] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
		verts[1] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
		verts[2] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
	}
	else {
		/* center step not store in this array */
		if(step > numsteps)
			step--;

		offset += step*numverts;

		verts[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x));
		verts[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y));
		verts[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z));
	}
}

ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, uint4 tri_vindex, int offset, int numverts, int numsteps, int step, float3 normals[3])
{
	if(step == numsteps) {
		/* center step: regular vertex location */
		normals[0] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.x));
		normals[1] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y));
		normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z));
	}
	else {
		/* center step is not stored in this array */
		if(step > numsteps)
			step--;

		offset += step*numverts;

		normals[0] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.x));
		normals[1] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.y));
		normals[2] = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + tri_vindex.z));
	}
}

ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, int prim, float time, float3 verts[3])
{
	/* get motion info */
	int numsteps, numverts;
	object_motion_info(kg, object, &numsteps, &numverts, NULL);

	/* figure out which steps we need to fetch and their interpolation factor */
	int maxstep = numsteps*2;
	int step = min((int)(time*maxstep), maxstep-1);
	float t = time*maxstep - step;

	/* find attribute */
	AttributeElement elem;
	int offset = find_attribute_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
	kernel_assert(offset != ATTR_STD_NOT_FOUND);

	/* fetch vertex coordinates */
	float3 next_verts[3];
	uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);

	motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
	motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);

	/* interpolate between steps */
	verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
	verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
	verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
}

/* Setup of motion triangle specific parts of ShaderData, moved into this one
 * function to more easily share computation of interpolated positions and
 * normals */

/* return 3 triangle vertex normals */
ccl_device_noinline void motion_triangle_shader_setup(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, bool subsurface)
{
	/* get shader */
	ccl_fetch(sd, shader) = kernel_tex_fetch(__tri_shader, ccl_fetch(sd, prim));

	/* get motion info */
	int numsteps, numverts;
	object_motion_info(kg, ccl_fetch(sd, object), &numsteps, &numverts, NULL);

	/* figure out which steps we need to fetch and their interpolation factor */
	int maxstep = numsteps*2;
	int step = min((int)(ccl_fetch(sd, time)*maxstep), maxstep-1);
	float t = ccl_fetch(sd, time)*maxstep - step;

	/* find attribute */
	AttributeElement elem;
	int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_POSITION, &elem);
	kernel_assert(offset != ATTR_STD_NOT_FOUND);

	/* fetch vertex coordinates */
	float3 verts[3], next_verts[3];
	uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));

	motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
	motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);

	/* interpolate between steps */
	verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
	verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
	verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];

	/* compute refined position */
#ifdef __SUBSURFACE__
	if(!subsurface)
#endif
		ccl_fetch(sd, P) = motion_triangle_refine(kg, sd, isect, ray, verts);
#ifdef __SUBSURFACE__
	else
		ccl_fetch(sd, P) = motion_triangle_refine_subsurface(kg, sd, isect, ray, verts);
#endif

	/* compute face normal */
	float3 Ng;
	if(ccl_fetch(sd, flag) & SD_NEGATIVE_SCALE_APPLIED)
		Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
	else
		Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));

	ccl_fetch(sd, Ng) = Ng;
	ccl_fetch(sd, N) = Ng;

	/* compute derivatives of P w.r.t. uv */
#ifdef __DPDU__
	ccl_fetch(sd, dPdu) = (verts[0] - verts[2]);
	ccl_fetch(sd, dPdv) = (verts[1] - verts[2]);
#endif

	/* compute smooth normal */
	if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
		/* find attribute */
		AttributeElement elem;
		int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
		kernel_assert(offset != ATTR_STD_NOT_FOUND);

		/* fetch vertex coordinates */
		float3 normals[3], next_normals[3];
		motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
		motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);

		/* interpolate between steps */
		normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
		normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
		normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];

		/* interpolate between vertices */
		float u = ccl_fetch(sd, u);
		float v = ccl_fetch(sd, v);
		float w = 1.0f - u - v;
		ccl_fetch(sd, N) = (u*normals[0] + v*normals[1] + w*normals[2]);
	}
}

CCL_NAMESPACE_END