Welcome to mirror list, hosted at ThFree Co, Russian Federation.

geom_motion_triangle_intersect.h « geom « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f74995becf53c189f02edd4afe3895b15cfd5187 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 * Copyright 2011-2016 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* Motion Triangle Primitive
 *
 * These are stored as regular triangles, plus extra positions and normals at
 * times other than the frame center. Computing the triangle vertex positions
 * or normals at a given ray time is a matter of interpolation of the two steps
 * between which the ray time lies.
 *
 * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
 * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
 */

CCL_NAMESPACE_BEGIN

/* Refine triangle intersection to more precise hit point. For rays that travel
 * far the precision is often not so good, this reintersects the primitive from
 * a closer distance.
 */

ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg,
                                                ShaderData *sd,
                                                const Intersection *isect,
                                                const Ray *ray,
                                                float3 verts[3])
{
	float3 P = ray->P;
	float3 D = ray->D;
	float t = isect->t;

#ifdef __INTERSECTION_REFINE__
	if(isect->object != OBJECT_NONE) {
		if(UNLIKELY(t == 0.0f)) {
			return P;
		}
#  ifdef __OBJECT_MOTION__
		Transform tfm = sd->ob_itfm;
#  else
		Transform tfm = object_fetch_transform(kg,
		                                       isect->object,
		                                       OBJECT_INVERSE_TRANSFORM);
#  endif

		P = transform_point(&tfm, P);
		D = transform_direction(&tfm, D*t);
		D = normalize_len(D, &t);
	}

	P = P + D*t;

	/* Compute refined intersection distance. */
	const float3 e1 = verts[0] - verts[2];
	const float3 e2 = verts[1] - verts[2];
	const float3 s1 = cross(D, e2);

	const float invdivisor = 1.0f/dot(s1, e1);
	const float3 d = P - verts[2];
	const float3 s2 = cross(d, e1);
	float rt = dot(e2, s2)*invdivisor;

	/* Compute refined position. */
	P = P + D*rt;

	if(isect->object != OBJECT_NONE) {
#  ifdef __OBJECT_MOTION__
		Transform tfm = sd->ob_tfm;
#  else
		Transform tfm = object_fetch_transform(kg,
		                                       isect->object,
		                                       OBJECT_TRANSFORM);
#  endif

		P = transform_point(&tfm, P);
	}

	return P;
#else
	return P + D*t;
#endif
}

/* Same as above, except that isect->t is assumed to be in object space
 * for instancing.
 */

#ifdef __SUBSURFACE__
#  if defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86))
ccl_device_noinline
#  else
ccl_device_inline
#  endif
float3 motion_triangle_refine_subsurface(KernelGlobals *kg,
                                         ShaderData *sd,
                                         const Intersection *isect,
                                         const Ray *ray,
                                         float3 verts[3])
{
	float3 P = ray->P;
	float3 D = ray->D;
	float t = isect->t;

#  ifdef __INTERSECTION_REFINE__
	if(isect->object != OBJECT_NONE) {
#    ifdef __OBJECT_MOTION__
		Transform tfm = sd->ob_itfm;
#    else
		Transform tfm = object_fetch_transform(kg,
		                                       isect->object,
		                                       OBJECT_INVERSE_TRANSFORM);
#    endif

		P = transform_point(&tfm, P);
		D = transform_direction(&tfm, D);
		D = normalize(D);
	}

	P = P + D*t;

	/* compute refined intersection distance */
	const float3 e1 = verts[0] - verts[2];
	const float3 e2 = verts[1] - verts[2];
	const float3 s1 = cross(D, e2);

	const float invdivisor = 1.0f/dot(s1, e1);
	const float3 d = P - verts[2];
	const float3 s2 = cross(d, e1);
	float rt = dot(e2, s2)*invdivisor;

	P = P + D*rt;

	if(isect->object != OBJECT_NONE) {
#    ifdef __OBJECT_MOTION__
		Transform tfm = sd->ob_tfm;
#    else
		Transform tfm = object_fetch_transform(kg,
		                                       isect->object,
		                                       OBJECT_TRANSFORM);
#    endif

		P = transform_point(&tfm, P);
	}

	return P;
#  else  /* __INTERSECTION_REFINE__ */
	return P + D*t;
#  endif  /* __INTERSECTION_REFINE__ */
}
#endif  /* __SUBSURFACE__ */


/* Ray intersection. We simply compute the vertex positions at the given ray
 * time and do a ray intersection with the resulting triangle.
 */

ccl_device_inline bool motion_triangle_intersect(
        KernelGlobals *kg,
        Intersection *isect,
        float3 P,
        float3 dir,
        float time,
        uint visibility,
        int object,
        int prim_addr)
{
	/* Primitive index for vertex location lookup. */
	int prim = kernel_tex_fetch(__prim_index, prim_addr);
	int fobject = (object == OBJECT_NONE)
	                  ? kernel_tex_fetch(__prim_object, prim_addr)
	                  : object;
	/* Get vertex locations for intersection. */
	float3 verts[3];
	motion_triangle_vertices(kg, fobject, prim, time, verts);
	/* Ray-triangle intersection, unoptimized. */
	float t, u, v;
	if(ray_triangle_intersect(P,
	                          dir,
	                          isect->t,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
	                          (ssef*)verts,
#else
	                          verts[0], verts[1], verts[2],
#endif
	                          &u, &v, &t))
	{
#ifdef __VISIBILITY_FLAG__
		/* Visibility flag test. we do it here under the assumption
		 * that most triangles are culled by node flags.
		 */
		if(kernel_tex_fetch(__prim_visibility, prim_addr) & visibility)
#endif
		{
			isect->t = t;
			isect->u = u;
			isect->v = v;
			isect->prim = prim_addr;
			isect->object = object;
			isect->type = PRIMITIVE_MOTION_TRIANGLE;
			return true;
		}
	}
	return false;
}

/* Special ray intersection routines for subsurface scattering. In that case we
 * only want to intersect with primitives in the same object, and if case of
 * multiple hits we pick a single random primitive as the intersection point.
 */
#ifdef __SUBSURFACE__
ccl_device_inline void motion_triangle_intersect_subsurface(
        KernelGlobals *kg,
        SubsurfaceIntersection *ss_isect,
        float3 P,
        float3 dir,
        float time,
        int object,
        int prim_addr,
        float tmax,
        uint *lcg_state,
        int max_hits)
{
	/* Primitive index for vertex location lookup. */
	int prim = kernel_tex_fetch(__prim_index, prim_addr);
	int fobject = (object == OBJECT_NONE)
	                  ? kernel_tex_fetch(__prim_object, prim_addr)
	                  : object;
	/* Get vertex locations for intersection. */
	float3 verts[3];
	motion_triangle_vertices(kg, fobject, prim, time, verts);
	/* Ray-triangle intersection, unoptimized. */
	float t, u, v;
	if(ray_triangle_intersect(P,
	                          dir,
	                          tmax,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
	                          (ssef*)verts,
#else
	                          verts[0], verts[1], verts[2],
#endif
	                          &u, &v, &t))
	{
		for(int i = min(max_hits, ss_isect->num_hits) - 1; i >= 0; --i) {
			if(ss_isect->hits[i].t == t) {
				return;
			}
		}
		ss_isect->num_hits++;
		int hit;
		if(ss_isect->num_hits <= max_hits) {
			hit = ss_isect->num_hits - 1;
		}
		else {
			/* Reservoir sampling: if we are at the maximum number of
			 * hits, randomly replace element or skip it.
			 */
			hit = lcg_step_uint(lcg_state) % ss_isect->num_hits;

			if(hit >= max_hits)
				return;
		}
		/* Record intersection. */
		Intersection *isect = &ss_isect->hits[hit];
		isect->t = t;
		isect->u = u;
		isect->v = v;
		isect->prim = prim_addr;
		isect->object = object;
		isect->type = PRIMITIVE_MOTION_TRIANGLE;
		/* Record geometric normal. */
		ss_isect->Ng[hit] = normalize(cross(verts[1] - verts[0],
		                                    verts[2] - verts[0]));
	}
}
#endif  /* __SUBSURFACE__ */

CCL_NAMESPACE_END