Welcome to mirror list, hosted at ThFree Co, Russian Federation.

integrator_intersect_closest.h « integrator « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c1315d486946a6f69db682f710dea2c4e21b7b86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
 * Copyright 2011-2021 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include "kernel/kernel_differential.h"
#include "kernel/kernel_light.h"
#include "kernel/kernel_path_state.h"
#include "kernel/kernel_projection.h"
#include "kernel/kernel_shadow_catcher.h"

#include "kernel/geom/geom.h"

#include "kernel/bvh/bvh.h"

CCL_NAMESPACE_BEGIN

template<uint32_t current_kernel>
ccl_device_forceinline bool integrator_intersect_terminate(KernelGlobals kg,
                                                           IntegratorState state,
                                                           const int shader_flags)
{

  /* Optional AO bounce termination.
   * We continue evaluating emissive/transparent surfaces and volumes, similar
   * to direct lighting. Only if we know there are none can we terminate the
   * path immediately. */
  if (path_state_ao_bounce(kg, state)) {
    if (shader_flags & (SD_HAS_TRANSPARENT_SHADOW | SD_HAS_EMISSION)) {
      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
    }
    else if (!integrator_state_volume_stack_is_empty(kg, state)) {
      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_VOLUME;
    }
    else {
      return true;
    }
  }

  /* Load random number state. */
  RNGState rng_state;
  path_state_rng_load(state, &rng_state);

  /* We perform path termination in this kernel to avoid launching shade_surface
   * and evaluating the shader when not needed. Only for emission and transparent
   * surfaces in front of emission do we need to evaluate the shader, since we
   * perform MIS as part of indirect rays. */
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
  const float probability = path_state_continuation_probability(kg, state, path_flag);

  if (probability != 1.0f) {
    const float terminate = path_state_rng_1D(kg, &rng_state, PRNG_TERMINATE);

    if (probability == 0.0f || terminate >= probability) {
      if (shader_flags & SD_HAS_EMISSION) {
        /* Mark path to be terminated right after shader evaluation on the surface. */
        INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_ON_NEXT_SURFACE;
      }
      else if (!integrator_state_volume_stack_is_empty(kg, state)) {
        /* TODO: only do this for emissive volumes. */
        INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_IN_NEXT_VOLUME;
      }
      else {
        return true;
      }
    }
  }

  return false;
}

/* Note that current_kernel is a template value since making this a variable
 * leads to poor performance with CUDA atomics. */
template<uint32_t current_kernel>
ccl_device_forceinline void integrator_intersect_shader_next_kernel(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const Intersection *ccl_restrict isect,
    const int shader,
    const int shader_flags)
{
  /* Note on scheduling.
   *
   * When there is no shadow catcher split the scheduling is simple: schedule surface shading with
   * or without raytrace support, depending on the shader used.
   *
   * When there is a shadow catcher split the general idea is to have the following configuration:
   *
   *  - Schedule surface shading kernel (with corresponding raytrace support) for the ray which
   *    will trace shadow catcher object.
   *
   *  - When no alpha-over of approximate shadow catcher is needed, schedule surface shading for
   *    the matte ray.
   *
   *  - Otherwise schedule background shading kernel, so that we have a background to alpha-over
   *    on. The background kernel will then schedule surface shading for the matte ray.
   *
   * Note that the splitting leaves kernel and sorting counters as-is, so use INIT semantic for
   * the matte path. */

  const bool use_raytrace_kernel = (shader_flags & SD_HAS_RAYTRACE);

  if (use_raytrace_kernel) {
    INTEGRATOR_PATH_NEXT_SORTED(
        current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
  }
  else {
    INTEGRATOR_PATH_NEXT_SORTED(current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
  }

#ifdef __SHADOW_CATCHER__
  const int object_flags = intersection_get_object_flags(kg, isect);
  if (kernel_shadow_catcher_split(kg, state, object_flags)) {
    if (kernel_data.film.pass_background != PASS_UNUSED && !kernel_data.background.transparent) {
      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_BACKGROUND;

      INTEGRATOR_PATH_INIT(DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
    }
    else if (use_raytrace_kernel) {
      INTEGRATOR_PATH_INIT_SORTED(DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
    }
    else {
      INTEGRATOR_PATH_INIT_SORTED(DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
    }
  }
#endif
}

ccl_device void integrator_intersect_closest(KernelGlobals kg, IntegratorState state)
{
  PROFILING_INIT(kg, PROFILING_INTERSECT_CLOSEST);

  /* Read ray from integrator state into local memory. */
  Ray ray ccl_optional_struct_init;
  integrator_state_read_ray(kg, state, &ray);
  kernel_assert(ray.t != 0.0f);

  const uint visibility = path_state_ray_visibility(state);
  const int last_isect_prim = INTEGRATOR_STATE(state, isect, prim);
  const int last_isect_object = INTEGRATOR_STATE(state, isect, object);

  /* Trick to use short AO rays to approximate indirect light at the end of the path. */
  if (path_state_ao_bounce(kg, state)) {
    ray.t = kernel_data.integrator.ao_bounces_distance;

    const float object_ao_distance = kernel_tex_fetch(__objects, last_isect_object).ao_distance;
    if (object_ao_distance != 0.0f) {
      ray.t = object_ao_distance;
    }
  }

  /* Scene Intersection. */
  Intersection isect ccl_optional_struct_init;
  bool hit = scene_intersect(kg, &ray, visibility, &isect);

  /* TODO: remove this and do it in the various intersection functions instead. */
  if (!hit) {
    isect.prim = PRIM_NONE;
  }

  /* Light intersection for MIS. */
  if (kernel_data.integrator.use_lamp_mis) {
    /* NOTE: if we make lights visible to camera rays, we'll need to initialize
     * these in the path_state_init. */
    const int last_type = INTEGRATOR_STATE(state, isect, type);
    const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

    hit = lights_intersect(
              kg, &ray, &isect, last_isect_prim, last_isect_object, last_type, path_flag) ||
          hit;
  }

  /* Write intersection result into global integrator state memory. */
  integrator_state_write_isect(kg, state, &isect);

#ifdef __VOLUME__
  if (!integrator_state_volume_stack_is_empty(kg, state)) {
    const bool hit_surface = hit && !(isect.type & PRIMITIVE_LAMP);
    const int shader = (hit_surface) ? intersection_get_shader(kg, &isect) : SHADER_NONE;
    const int flags = (hit_surface) ? kernel_tex_fetch(__shaders, shader).flags : 0;

    if (!integrator_intersect_terminate<DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST>(
            kg, state, flags)) {
      /* Continue with volume kernel if we are inside a volume, regardless
       * if we hit anything. */
      INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST,
                           DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME);
    }
    else {
      INTEGRATOR_PATH_TERMINATE(DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
    }
    return;
  }
#endif

  if (hit) {
    /* Hit a surface, continue with light or surface kernel. */
    if (isect.type & PRIMITIVE_LAMP) {
      INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST,
                           DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
      return;
    }
    else {
      /* Hit a surface, continue with surface kernel unless terminated. */
      const int shader = intersection_get_shader(kg, &isect);
      const int flags = kernel_tex_fetch(__shaders, shader).flags;

      if (!integrator_intersect_terminate<DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST>(
              kg, state, flags)) {
        integrator_intersect_shader_next_kernel<DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST>(
            kg, state, &isect, shader, flags);
        return;
      }
      else {
        INTEGRATOR_PATH_TERMINATE(DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
        return;
      }
    }
  }
  else {
    /* Nothing hit, continue with background kernel. */
    INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST,
                         DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
    return;
  }
}

CCL_NAMESPACE_END