Welcome to mirror list, hosted at ThFree Co, Russian Federation.

intersect_closest.h « integrator « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c7c3d74fa21ac513b0614d11c49d796df95244dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#pragma once

#include "kernel/camera/projection.h"

#include "kernel/film/light_passes.h"

#include "kernel/integrator/path_state.h"
#include "kernel/integrator/shadow_catcher.h"

#include "kernel/light/light.h"

#include "kernel/geom/geom.h"

#include "kernel/bvh/bvh.h"

CCL_NAMESPACE_BEGIN

ccl_device_forceinline bool integrator_intersect_terminate(KernelGlobals kg,
                                                           IntegratorState state,
                                                           const int shader_flags)
{

  /* Optional AO bounce termination.
   * We continue evaluating emissive/transparent surfaces and volumes, similar
   * to direct lighting. Only if we know there are none can we terminate the
   * path immediately. */
  if (path_state_ao_bounce(kg, state)) {
    if (shader_flags & (SD_HAS_TRANSPARENT_SHADOW | SD_HAS_EMISSION)) {
      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
    }
    else if (!integrator_state_volume_stack_is_empty(kg, state)) {
      INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_VOLUME;
    }
    else {
      return true;
    }
  }

  /* Load random number state. */
  RNGState rng_state;
  path_state_rng_load(state, &rng_state);

  /* We perform path termination in this kernel to avoid launching shade_surface
   * and evaluating the shader when not needed. Only for emission and transparent
   * surfaces in front of emission do we need to evaluate the shader, since we
   * perform MIS as part of indirect rays. */
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
  const float probability = path_state_continuation_probability(kg, state, path_flag);
  INTEGRATOR_STATE_WRITE(state, path, continuation_probability) = probability;

  if (probability != 1.0f) {
    const float terminate = path_state_rng_1D(kg, &rng_state, PRNG_TERMINATE);

    if (probability == 0.0f || terminate >= probability) {
      if (shader_flags & SD_HAS_EMISSION) {
        /* Mark path to be terminated right after shader evaluation on the surface. */
        INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_ON_NEXT_SURFACE;
      }
      else if (!integrator_state_volume_stack_is_empty(kg, state)) {
        /* TODO: only do this for emissive volumes. */
        INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_IN_NEXT_VOLUME;
      }
      else {
        return true;
      }
    }
  }

  return false;
}

#ifdef __SHADOW_CATCHER__
/* Split path if a shadow catcher was hit. */
ccl_device_forceinline void integrator_split_shadow_catcher(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const Intersection *ccl_restrict isect,
    ccl_global float *ccl_restrict render_buffer)
{
  /* Test if we hit a shadow catcher object, and potentially split the path to continue tracing two
   * paths from here. */
  const int object_flags = intersection_get_object_flags(kg, isect);
  if (!kernel_shadow_catcher_is_path_split_bounce(kg, state, object_flags)) {
    return;
  }

  film_write_shadow_catcher_bounce_data(kg, state, render_buffer);

  /* Mark state as having done a shadow catcher split so that it stops contributing to
   * the shadow catcher matte pass, but keeps contributing to the combined pass. */
  INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_HIT;

  /* Copy current state to new state. */
  state = integrator_state_shadow_catcher_split(kg, state);

  /* Initialize new state.
   *
   * Note that the splitting leaves kernel and sorting counters as-is, so use INIT semantic for
   * the matte path. */

  /* Mark current state so that it will only track contribution of shadow catcher objects ignoring
   * non-catcher objects. */
  INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_PASS;

  if (kernel_data.film.pass_background != PASS_UNUSED && !kernel_data.background.transparent) {
    /* If using background pass, schedule background shading kernel so that we have a background
     * to alpha-over on. The background kernel will then continue the path afterwards. */
    INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_BACKGROUND;
    integrator_path_init(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
    return;
  }

  if (!integrator_state_volume_stack_is_empty(kg, state)) {
    /* Volume stack is not empty. Re-init the volume stack to exclude any non-shadow catcher
     * objects from it, and then continue shading volume and shadow catcher surface after. */
    integrator_path_init(kg, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK);
    return;
  }

  /* Continue with shading shadow catcher surface. */
  const int shader = intersection_get_shader(kg, isect);
  const int flags = kernel_data_fetch(shaders, shader).flags;
  const bool use_caustics = kernel_data.integrator.use_caustics &&
                            (object_flags & SD_OBJECT_CAUSTICS);
  const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);

  if (use_caustics) {
    integrator_path_init_sorted(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
  }
  else if (use_raytrace_kernel) {
    integrator_path_init_sorted(
        kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
  }
  else {
    integrator_path_init_sorted(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
  }
}

/* Schedule next kernel to be executed after updating volume stack for shadow catcher. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_shadow_catcher_volume(
    KernelGlobals kg, IntegratorState state)
{
  /* Continue with shading shadow catcher surface. Same as integrator_split_shadow_catcher, but
   * using NEXT instead of INIT. */
  Intersection isect ccl_optional_struct_init;
  integrator_state_read_isect(kg, state, &isect);

  const int shader = intersection_get_shader(kg, &isect);
  const int flags = kernel_data_fetch(shaders, shader).flags;
  const int object_flags = intersection_get_object_flags(kg, &isect);
  const bool use_caustics = kernel_data.integrator.use_caustics &&
                            (object_flags & SD_OBJECT_CAUSTICS);
  const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);

  if (use_caustics) {
    integrator_path_next_sorted(
        kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
  }
  else if (use_raytrace_kernel) {
    integrator_path_next_sorted(
        kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
  }
  else {
    integrator_path_next_sorted(
        kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
  }
}

/* Schedule next kernel to be executed after executing background shader for shadow catcher. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_shadow_catcher_background(
    KernelGlobals kg, IntegratorState state)
{
  /* Same logic as integrator_split_shadow_catcher, but using NEXT instead of INIT. */
  if (!integrator_state_volume_stack_is_empty(kg, state)) {
    /* Volume stack is not empty. Re-init the volume stack to exclude any non-shadow catcher
     * objects from it, and then continue shading volume and shadow catcher surface after. */
    integrator_path_next(
        kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK);
    return;
  }

  /* Continue with shading shadow catcher surface. */
  integrator_intersect_next_kernel_after_shadow_catcher_volume<current_kernel>(kg, state);
}
#endif

/* Schedule next kernel to be executed after intersect closest.
 *
 * Note that current_kernel is a template value since making this a variable
 * leads to poor performance with CUDA atomics. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const Intersection *ccl_restrict isect,
    ccl_global float *ccl_restrict render_buffer,
    const bool hit)
{
  /* Continue with volume kernel if we are inside a volume, regardless if we hit anything. */
#ifdef __VOLUME__
  if (!integrator_state_volume_stack_is_empty(kg, state)) {
    const bool hit_surface = hit && !(isect->type & PRIMITIVE_LAMP);
    const int shader = (hit_surface) ? intersection_get_shader(kg, isect) : SHADER_NONE;
    const int flags = (hit_surface) ? kernel_data_fetch(shaders, shader).flags : 0;

    if (!integrator_intersect_terminate(kg, state, flags)) {
      integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME);
    }
    else {
      integrator_path_terminate(kg, state, current_kernel);
    }
    return;
  }
#endif

  if (hit) {
    /* Hit a surface, continue with light or surface kernel. */
    if (isect->type & PRIMITIVE_LAMP) {
      integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
    }
    else {
      /* Hit a surface, continue with surface kernel unless terminated. */
      const int shader = intersection_get_shader(kg, isect);
      const int flags = kernel_data_fetch(shaders, shader).flags;

      if (!integrator_intersect_terminate(kg, state, flags)) {
        const int object_flags = intersection_get_object_flags(kg, isect);
        const bool use_caustics = kernel_data.integrator.use_caustics &&
                                  (object_flags & SD_OBJECT_CAUSTICS);
        const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);
        if (use_caustics) {
          integrator_path_next_sorted(
              kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
        }
        else if (use_raytrace_kernel) {
          integrator_path_next_sorted(
              kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
        }
        else {
          integrator_path_next_sorted(
              kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
        }

#ifdef __SHADOW_CATCHER__
        /* Handle shadow catcher. */
        integrator_split_shadow_catcher(kg, state, isect, render_buffer);
#endif
      }
      else {
        integrator_path_terminate(kg, state, current_kernel);
      }
    }
  }
  else {
    /* Nothing hit, continue with background kernel. */
    integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
  }
}

/* Schedule next kernel to be executed after shade volume.
 *
 * The logic here matches integrator_intersect_next_kernel, except that
 * volume shading and termination testing have already been done. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_volume(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private const Intersection *ccl_restrict isect,
    ccl_global float *ccl_restrict render_buffer)
{
  if (isect->prim != PRIM_NONE) {
    /* Hit a surface, continue with light or surface kernel. */
    if (isect->type & PRIMITIVE_LAMP) {
      integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
      return;
    }
    else {
      /* Hit a surface, continue with surface kernel unless terminated. */
      const int shader = intersection_get_shader(kg, isect);
      const int flags = kernel_data_fetch(shaders, shader).flags;
      const int object_flags = intersection_get_object_flags(kg, isect);
      const bool use_caustics = kernel_data.integrator.use_caustics &&
                                (object_flags & SD_OBJECT_CAUSTICS);
      const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);

      if (use_caustics) {
        integrator_path_next_sorted(
            kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
      }
      else if (use_raytrace_kernel) {
        integrator_path_next_sorted(
            kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
      }
      else {
        integrator_path_next_sorted(
            kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
      }

#ifdef __SHADOW_CATCHER__
      /* Handle shadow catcher. */
      integrator_split_shadow_catcher(kg, state, isect, render_buffer);
#endif
      return;
    }
  }
  else {
    /* Nothing hit, continue with background kernel. */
    integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
    return;
  }
}

ccl_device void integrator_intersect_closest(KernelGlobals kg,
                                             IntegratorState state,
                                             ccl_global float *ccl_restrict render_buffer)
{
  PROFILING_INIT(kg, PROFILING_INTERSECT_CLOSEST);

  /* Read ray from integrator state into local memory. */
  Ray ray ccl_optional_struct_init;
  integrator_state_read_ray(kg, state, &ray);
  kernel_assert(ray.tmax != 0.0f);

  const uint visibility = path_state_ray_visibility(state);
  const int last_isect_prim = INTEGRATOR_STATE(state, isect, prim);
  const int last_isect_object = INTEGRATOR_STATE(state, isect, object);

  /* Trick to use short AO rays to approximate indirect light at the end of the path. */
  if (path_state_ao_bounce(kg, state)) {
    ray.tmax = kernel_data.integrator.ao_bounces_distance;

    if (last_isect_object != OBJECT_NONE) {
      const float object_ao_distance = kernel_data_fetch(objects, last_isect_object).ao_distance;
      if (object_ao_distance != 0.0f) {
        ray.tmax = object_ao_distance;
      }
    }
  }

  /* Scene Intersection. */
  Intersection isect ccl_optional_struct_init;
  isect.object = OBJECT_NONE;
  isect.prim = PRIM_NONE;
  ray.self.object = last_isect_object;
  ray.self.prim = last_isect_prim;
  ray.self.light_object = OBJECT_NONE;
  ray.self.light_prim = PRIM_NONE;
  bool hit = scene_intersect(kg, &ray, visibility, &isect);

  /* TODO: remove this and do it in the various intersection functions instead. */
  if (!hit) {
    isect.prim = PRIM_NONE;
  }

  /* Setup mnee flag to signal last intersection with a caster */
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

#ifdef __MNEE__
  /* Path culling logic for MNEE (removes fireflies at the cost of bias) */
  if (kernel_data.integrator.use_caustics) {
    /* The following firefly removal mechanism works by culling light connections when
     * a ray comes from a caustic caster directly after bouncing off a different caustic
     * receiver */
    bool from_caustic_caster = false;
    bool from_caustic_receiver = false;
    if (!(path_flag & PATH_RAY_CAMERA) && last_isect_object != OBJECT_NONE) {
      const int object_flags = kernel_data_fetch(object_flag, last_isect_object);
      from_caustic_receiver = (object_flags & SD_OBJECT_CAUSTICS_RECEIVER);
      from_caustic_caster = (object_flags & SD_OBJECT_CAUSTICS_CASTER);
    }

    bool has_receiver_ancestor = INTEGRATOR_STATE(state, path, mnee) & PATH_MNEE_RECEIVER_ANCESTOR;
    INTEGRATOR_STATE_WRITE(state, path, mnee) &= ~PATH_MNEE_CULL_LIGHT_CONNECTION;
    if (from_caustic_caster && has_receiver_ancestor)
      INTEGRATOR_STATE_WRITE(state, path, mnee) |= PATH_MNEE_CULL_LIGHT_CONNECTION;
    if (from_caustic_receiver)
      INTEGRATOR_STATE_WRITE(state, path, mnee) |= PATH_MNEE_RECEIVER_ANCESTOR;
  }
#endif /* __MNEE__ */

  /* Light intersection for MIS. */
  if (kernel_data.integrator.use_lamp_mis) {
    /* NOTE: if we make lights visible to camera rays, we'll need to initialize
     * these in the path_state_init. */
    const int last_type = INTEGRATOR_STATE(state, isect, type);
    hit = lights_intersect(
              kg, state, &ray, &isect, last_isect_prim, last_isect_object, last_type, path_flag) ||
          hit;
  }

  /* Write intersection result into global integrator state memory. */
  integrator_state_write_isect(kg, state, &isect);

  /* Setup up next kernel to be executed. */
  integrator_intersect_next_kernel<DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST>(
      kg, state, &isect, render_buffer, hit);
}

CCL_NAMESPACE_END