Welcome to mirror list, hosted at ThFree Co, Russian Federation.

shade_surface.h « integrator « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 10d3cbf7f5768884e2b08b7f87c472463a7b2928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 * Copyright 2011-2021 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include "kernel/film/accumulate.h"
#include "kernel/film/passes.h"

#include "kernel/integrator/path_state.h"
#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/subsurface.h"
#include "kernel/integrator/volume_stack.h"

#include "kernel/light/light.h"
#include "kernel/light/sample.h"

CCL_NAMESPACE_BEGIN

ccl_device_forceinline void integrate_surface_shader_setup(KernelGlobals kg,
                                                           ConstIntegratorState state,
                                                           ccl_private ShaderData *sd)
{
  Intersection isect ccl_optional_struct_init;
  integrator_state_read_isect(kg, state, &isect);

  Ray ray ccl_optional_struct_init;
  integrator_state_read_ray(kg, state, &ray);

  shader_setup_from_ray(kg, sd, &ray, &isect);
}

#ifdef __HOLDOUT__
ccl_device_forceinline bool integrate_surface_holdout(KernelGlobals kg,
                                                      ConstIntegratorState state,
                                                      ccl_private ShaderData *sd,
                                                      ccl_global float *ccl_restrict render_buffer)
{
  /* Write holdout transparency to render buffer and stop if fully holdout. */
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

  if (((sd->flag & SD_HOLDOUT) || (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
      (path_flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
    const float3 holdout_weight = shader_holdout_apply(kg, sd);
    if (kernel_data.background.transparent) {
      const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
      const float transparent = average(holdout_weight * throughput);
      kernel_accum_holdout(kg, state, path_flag, transparent, render_buffer);
    }
    if (isequal_float3(holdout_weight, one_float3())) {
      return false;
    }
  }

  return true;
}
#endif /* __HOLDOUT__ */

#ifdef __EMISSION__
ccl_device_forceinline void integrate_surface_emission(KernelGlobals kg,
                                                       ConstIntegratorState state,
                                                       ccl_private const ShaderData *sd,
                                                       ccl_global float *ccl_restrict
                                                           render_buffer)
{
  const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

  /* Evaluate emissive closure. */
  float3 L = shader_emissive_eval(sd);

#  ifdef __HAIR__
  if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS) &&
      (sd->type & PRIMITIVE_TRIANGLE))
#  else
  if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS))
#  endif
  {
    const float bsdf_pdf = INTEGRATOR_STATE(state, path, mis_ray_pdf);
    const float t = sd->ray_length + INTEGRATOR_STATE(state, path, mis_ray_t);

    /* Multiple importance sampling, get triangle light pdf,
     * and compute weight with respect to BSDF pdf. */
    float pdf = triangle_light_pdf(kg, sd, t);
    float mis_weight = light_sample_mis_weight_forward(kg, bsdf_pdf, pdf);
    L *= mis_weight;
  }

  const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
  kernel_accum_emission(kg, state, throughput * L, render_buffer);
}
#endif /* __EMISSION__ */

#ifdef __EMISSION__
/* Path tracing: sample point on light and evaluate light shader, then
 * queue shadow ray to be traced. */
ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
                                                           IntegratorState state,
                                                           ccl_private ShaderData *sd,
                                                           ccl_private const RNGState *rng_state)
{
  /* Test if there is a light or BSDF that needs direct light. */
  if (!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL))) {
    return;
  }

  /* Sample position on a light. */
  LightSample ls ccl_optional_struct_init;
  {
    const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
    const uint bounce = INTEGRATOR_STATE(state, path, bounce);
    float light_u, light_v;
    path_state_rng_2D(kg, rng_state, PRNG_LIGHT_U, &light_u, &light_v);

    if (!light_distribution_sample_from_position(
            kg, light_u, light_v, sd->time, sd->P, bounce, path_flag, &ls)) {
      return;
    }
  }

  kernel_assert(ls.pdf != 0.0f);

  /* Evaluate light shader.
   *
   * TODO: can we reuse sd memory? In theory we can move this after
   * integrate_surface_bounce, evaluate the BSDF, and only then evaluate
   * the light shader. This could also move to its own kernel, for
   * non-constant light sources. */
  ShaderDataTinyStorage emission_sd_storage;
  ccl_private ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
  const float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, sd->time);
  if (is_zero(light_eval)) {
    return;
  }

  /* Evaluate BSDF. */
  const bool is_transmission = shader_bsdf_is_transmission(sd, ls.D);

  BsdfEval bsdf_eval ccl_optional_struct_init;
  const float bsdf_pdf = shader_bsdf_eval(kg, sd, ls.D, is_transmission, &bsdf_eval, ls.shader);
  bsdf_eval_mul3(&bsdf_eval, light_eval / ls.pdf);

  if (ls.shader & SHADER_USE_MIS) {
    const float mis_weight = light_sample_mis_weight_nee(kg, ls.pdf, bsdf_pdf);
    bsdf_eval_mul(&bsdf_eval, mis_weight);
  }

  /* Path termination. */
  const float terminate = path_state_rng_light_termination(kg, rng_state);
  if (light_sample_terminate(kg, &ls, &bsdf_eval, terminate)) {
    return;
  }

  /* Create shadow ray. */
  Ray ray ccl_optional_struct_init;
  light_sample_to_surface_shadow_ray(kg, sd, &ls, &ray);
  const bool is_light = light_sample_is_light(&ls);

  /* Branch off shadow kernel. */
  INTEGRATOR_SHADOW_PATH_INIT(
      shadow_state, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SHADOW, shadow);

  /* Copy volume stack and enter/exit volume. */
  integrator_state_copy_volume_stack_to_shadow(kg, shadow_state, state);

  if (is_transmission) {
#  ifdef __VOLUME__
    shadow_volume_stack_enter_exit(kg, shadow_state, sd);
#  endif
  }

  /* Write shadow ray and associated state to global memory. */
  integrator_state_write_shadow_ray(kg, shadow_state, &ray);
  // Save memory by storing the light and object indices in the shadow_isect
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, object) = ray.self.object;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, prim) = ray.self.prim;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, object) = ray.self.light_object;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, prim) = ray.self.light_prim;

  /* Copy state from main path to shadow path. */
  const uint16_t bounce = INTEGRATOR_STATE(state, path, bounce);
  const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
  uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag);
  shadow_flag |= (is_light) ? PATH_RAY_SHADOW_FOR_LIGHT : 0;
  const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * bsdf_eval_sum(&bsdf_eval);

  if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
    packed_float3 pass_diffuse_weight;
    packed_float3 pass_glossy_weight;

    if (shadow_flag & PATH_RAY_ANY_PASS) {
      /* Indirect bounce, use weights from earlier surface or volume bounce. */
      pass_diffuse_weight = INTEGRATOR_STATE(state, path, pass_diffuse_weight);
      pass_glossy_weight = INTEGRATOR_STATE(state, path, pass_glossy_weight);
    }
    else {
      /* Direct light, use BSDFs at this bounce. */
      shadow_flag |= PATH_RAY_SURFACE_PASS;
      pass_diffuse_weight = packed_float3(bsdf_eval_pass_diffuse_weight(&bsdf_eval));
      pass_glossy_weight = packed_float3(bsdf_eval_pass_glossy_weight(&bsdf_eval));
    }

    INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_diffuse_weight) = pass_diffuse_weight;
    INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_glossy_weight) = pass_glossy_weight;
  }

  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
      state, path, render_pixel_index);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_offset) = INTEGRATOR_STATE(
      state, path, rng_offset);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_hash) = INTEGRATOR_STATE(
      state, path, rng_hash);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, sample) = INTEGRATOR_STATE(
      state, path, sample);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, flag) = shadow_flag;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, bounce) = bounce;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transparent_bounce) = transparent_bounce;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, diffuse_bounce) = INTEGRATOR_STATE(
      state, path, diffuse_bounce);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, glossy_bounce) = INTEGRATOR_STATE(
      state, path, glossy_bounce);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transmission_bounce) = INTEGRATOR_STATE(
      state, path, transmission_bounce);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, throughput) = throughput;

  if (kernel_data.kernel_features & KERNEL_FEATURE_SHADOW_PASS) {
    INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, unshadowed_throughput) = throughput;
  }
}
#endif

/* Path tracing: bounce off or through surface with new direction. */
ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
    KernelGlobals kg,
    IntegratorState state,
    ccl_private ShaderData *sd,
    ccl_private const RNGState *rng_state)
{
  /* Sample BSDF or BSSRDF. */
  if (!(sd->flag & (SD_BSDF | SD_BSSRDF))) {
    return LABEL_NONE;
  }

  float bsdf_u, bsdf_v;
  path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
  ccl_private const ShaderClosure *sc = shader_bsdf_bssrdf_pick(sd, &bsdf_u);

#ifdef __SUBSURFACE__
  /* BSSRDF closure, we schedule subsurface intersection kernel. */
  if (CLOSURE_IS_BSSRDF(sc->type)) {
    return subsurface_bounce(kg, state, sd, sc);
  }
#endif

  /* BSDF closure, sample direction. */
  float bsdf_pdf;
  BsdfEval bsdf_eval ccl_optional_struct_init;
  float3 bsdf_omega_in ccl_optional_struct_init;
  differential3 bsdf_domega_in ccl_optional_struct_init;
  int label;

  label = shader_bsdf_sample_closure(
      kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);

  if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) {
    return LABEL_NONE;
  }

  /* Setup ray. Note that clipping works through transparent bounces. */
  INTEGRATOR_STATE_WRITE(state, ray, P) = sd->P;
  INTEGRATOR_STATE_WRITE(state, ray, D) = normalize(bsdf_omega_in);
  INTEGRATOR_STATE_WRITE(state, ray, t) = (label & LABEL_TRANSPARENT) ?
                                              INTEGRATOR_STATE(state, ray, t) - sd->ray_length :
                                              FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
  INTEGRATOR_STATE_WRITE(state, ray, dP) = differential_make_compact(sd->dP);
  INTEGRATOR_STATE_WRITE(state, ray, dD) = differential_make_compact(bsdf_domega_in);
#endif

  /* Update throughput. */
  float3 throughput = INTEGRATOR_STATE(state, path, throughput);
  throughput *= bsdf_eval_sum(&bsdf_eval) / bsdf_pdf;
  INTEGRATOR_STATE_WRITE(state, path, throughput) = throughput;

  if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
    if (INTEGRATOR_STATE(state, path, bounce) == 0) {
      INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = bsdf_eval_pass_diffuse_weight(
          &bsdf_eval);
      INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = bsdf_eval_pass_glossy_weight(
          &bsdf_eval);
    }
  }

  /* Update path state */
  if (label & LABEL_TRANSPARENT) {
    INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) += sd->ray_length;
  }
  else {
    INTEGRATOR_STATE_WRITE(state, path, mis_ray_pdf) = bsdf_pdf;
    INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) = 0.0f;
    INTEGRATOR_STATE_WRITE(state, path, min_ray_pdf) = fminf(
        bsdf_pdf, INTEGRATOR_STATE(state, path, min_ray_pdf));
  }

  path_state_next(kg, state, label);
  return label;
}

#ifdef __VOLUME__
ccl_device_forceinline bool integrate_surface_volume_only_bounce(IntegratorState state,
                                                                 ccl_private ShaderData *sd)
{
  if (!path_state_volume_next(state)) {
    return LABEL_NONE;
  }

  /* Setup ray position, direction stays unchanged. */
  INTEGRATOR_STATE_WRITE(state, ray, P) = sd->P;

  /* Clipping works through transparent. */
  INTEGRATOR_STATE_WRITE(state, ray, t) -= sd->ray_length;

#  ifdef __RAY_DIFFERENTIALS__
  INTEGRATOR_STATE_WRITE(state, ray, dP) = differential_make_compact(sd->dP);
#  endif

  INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) += sd->ray_length;

  return LABEL_TRANSMIT | LABEL_TRANSPARENT;
}
#endif

#if defined(__AO__)
ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
                                                 IntegratorState state,
                                                 ccl_private const ShaderData *ccl_restrict sd,
                                                 ccl_private const RNGState *ccl_restrict
                                                     rng_state,
                                                 ccl_global float *ccl_restrict render_buffer)
{
  if (!(kernel_data.kernel_features & KERNEL_FEATURE_AO_ADDITIVE) &&
      !(INTEGRATOR_STATE(state, path, flag) & PATH_RAY_CAMERA)) {
    return;
  }

  float bsdf_u, bsdf_v;
  path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);

  float3 ao_N;
  const float3 ao_weight = shader_bsdf_ao(
      kg, sd, kernel_data.integrator.ao_additive_factor, &ao_N);

  float3 ao_D;
  float ao_pdf;
  sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);

  if (!(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f)) {
    return;
  }

  Ray ray ccl_optional_struct_init;
  ray.P = sd->P;
  ray.D = ao_D;
  ray.t = kernel_data.integrator.ao_bounces_distance;
  ray.time = sd->time;
  ray.self.object = sd->object;
  ray.self.prim = sd->prim;
  ray.self.light_object = OBJECT_NONE;
  ray.self.light_prim = PRIM_NONE;
  ray.dP = differential_zero_compact();
  ray.dD = differential_zero_compact();

  /* Branch off shadow kernel. */
  INTEGRATOR_SHADOW_PATH_INIT(shadow_state, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SHADOW, ao);

  /* Copy volume stack and enter/exit volume. */
  integrator_state_copy_volume_stack_to_shadow(kg, shadow_state, state);

  /* Write shadow ray and associated state to global memory. */
  integrator_state_write_shadow_ray(kg, shadow_state, &ray);
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, object) = ray.self.object;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, prim) = ray.self.prim;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, object) = ray.self.light_object;
  INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, prim) = ray.self.light_prim;

  /* Copy state from main path to shadow path. */
  const uint16_t bounce = INTEGRATOR_STATE(state, path, bounce);
  const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
  uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag) | PATH_RAY_SHADOW_FOR_AO;
  const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * shader_bsdf_alpha(kg, sd);

  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
      state, path, render_pixel_index);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_offset) = INTEGRATOR_STATE(
      state, path, rng_offset);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_hash) = INTEGRATOR_STATE(
      state, path, rng_hash);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, sample) = INTEGRATOR_STATE(
      state, path, sample);
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, flag) = shadow_flag;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, bounce) = bounce;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transparent_bounce) = transparent_bounce;
  INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, throughput) = throughput;

  if (kernel_data.kernel_features & KERNEL_FEATURE_AO_ADDITIVE) {
    INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, unshadowed_throughput) = ao_weight;
  }
}
#endif /* defined(__AO__) */

template<uint node_feature_mask>
ccl_device bool integrate_surface(KernelGlobals kg,
                                  IntegratorState state,
                                  ccl_global float *ccl_restrict render_buffer)

{
  PROFILING_INIT_FOR_SHADER(kg, PROFILING_SHADE_SURFACE_SETUP);

  /* Setup shader data. */
  ShaderData sd;
  integrate_surface_shader_setup(kg, state, &sd);
  PROFILING_SHADER(sd.object, sd.shader);

  int continue_path_label = 0;

  /* Skip most work for volume bounding surface. */
#ifdef __VOLUME__
  if (!(sd.flag & SD_HAS_ONLY_VOLUME)) {
#endif
    const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);

#ifdef __SUBSURFACE__
    /* Can skip shader evaluation for BSSRDF exit point without bump mapping. */
    if (!(path_flag & PATH_RAY_SUBSURFACE) || ((sd.flag & SD_HAS_BSSRDF_BUMP)))
#endif
    {
      /* Evaluate shader. */
      PROFILING_EVENT(PROFILING_SHADE_SURFACE_EVAL);
      shader_eval_surface<node_feature_mask>(kg, state, &sd, render_buffer, path_flag);

      /* Initialize additional RNG for BSDFs. */
      if (sd.flag & SD_BSDF_NEEDS_LCG) {
        sd.lcg_state = lcg_state_init(INTEGRATOR_STATE(state, path, rng_hash),
                                      INTEGRATOR_STATE(state, path, rng_offset),
                                      INTEGRATOR_STATE(state, path, sample),
                                      0xb4bc3953);
      }
    }

#ifdef __SUBSURFACE__
    if (path_flag & PATH_RAY_SUBSURFACE) {
      /* When coming from inside subsurface scattering, setup a diffuse
       * closure to perform lighting at the exit point. */
      subsurface_shader_data_setup(kg, state, &sd, path_flag);
      INTEGRATOR_STATE_WRITE(state, path, flag) &= ~PATH_RAY_SUBSURFACE;
    }
#endif

    shader_prepare_surface_closures(kg, state, &sd, path_flag);

#ifdef __HOLDOUT__
    /* Evaluate holdout. */
    if (!integrate_surface_holdout(kg, state, &sd, render_buffer)) {
      return false;
    }
#endif

#ifdef __EMISSION__
    /* Write emission. */
    if (sd.flag & SD_EMISSION) {
      integrate_surface_emission(kg, state, &sd, render_buffer);
    }
#endif

#ifdef __PASSES__
    /* Write render passes. */
    PROFILING_EVENT(PROFILING_SHADE_SURFACE_PASSES);
    kernel_write_data_passes(kg, state, &sd, render_buffer);
#endif

    /* Load random number state. */
    RNGState rng_state;
    path_state_rng_load(state, &rng_state);

    /* Perform path termination. Most paths have already been terminated in
     * the intersect_closest kernel, this is just for emission and for dividing
     * throughput by the probability at the right moment.
     *
     * Also ensure we don't do it twice for SSS at both the entry and exit point. */
    if (!(path_flag & PATH_RAY_SUBSURFACE)) {
      const float probability = (path_flag & PATH_RAY_TERMINATE_ON_NEXT_SURFACE) ?
                                    0.0f :
                                    INTEGRATOR_STATE(state, path, continuation_probability);
      if (probability == 0.0f) {
        return false;
      }
      else if (probability != 1.0f) {
        INTEGRATOR_STATE_WRITE(state, path, throughput) /= probability;
      }
    }

#ifdef __DENOISING_FEATURES__
    kernel_write_denoising_features_surface(kg, state, &sd, render_buffer);
#endif

    /* Direct light. */
    PROFILING_EVENT(PROFILING_SHADE_SURFACE_DIRECT_LIGHT);
    integrate_surface_direct_light(kg, state, &sd, &rng_state);

#if defined(__AO__)
    /* Ambient occlusion pass. */
    if (kernel_data.kernel_features & KERNEL_FEATURE_AO) {
      PROFILING_EVENT(PROFILING_SHADE_SURFACE_AO);
      integrate_surface_ao(kg, state, &sd, &rng_state, render_buffer);
    }
#endif

    PROFILING_EVENT(PROFILING_SHADE_SURFACE_INDIRECT_LIGHT);
    continue_path_label = integrate_surface_bsdf_bssrdf_bounce(kg, state, &sd, &rng_state);
#ifdef __VOLUME__
  }
  else {
    PROFILING_EVENT(PROFILING_SHADE_SURFACE_INDIRECT_LIGHT);
    continue_path_label = integrate_surface_volume_only_bounce(state, &sd);
  }

  if (continue_path_label & LABEL_TRANSMIT) {
    /* Enter/Exit volume. */
    volume_stack_enter_exit(kg, state, &sd);
  }
#endif

  return continue_path_label != 0;
}

template<uint node_feature_mask = KERNEL_FEATURE_NODE_MASK_SURFACE & ~KERNEL_FEATURE_NODE_RAYTRACE,
         int current_kernel = DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE>
ccl_device_forceinline void integrator_shade_surface(KernelGlobals kg,
                                                     IntegratorState state,
                                                     ccl_global float *ccl_restrict render_buffer)
{
  if (integrate_surface<node_feature_mask>(kg, state, render_buffer)) {
    if (INTEGRATOR_STATE(state, path, flag) & PATH_RAY_SUBSURFACE) {
      INTEGRATOR_PATH_NEXT(current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SUBSURFACE);
    }
    else {
      kernel_assert(INTEGRATOR_STATE(state, ray, t) != 0.0f);
      INTEGRATOR_PATH_NEXT(current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
    }
  }
  else {
    INTEGRATOR_PATH_TERMINATE(current_kernel);
  }
}

ccl_device_forceinline void integrator_shade_surface_raytrace(
    KernelGlobals kg, IntegratorState state, ccl_global float *ccl_restrict render_buffer)
{
  integrator_shade_surface<KERNEL_FEATURE_NODE_MASK_SURFACE,
                           DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE>(
      kg, state, render_buffer);
}

CCL_NAMESPACE_END