Welcome to mirror list, hosted at ThFree Co, Russian Federation.

volume_shader.h « integrator « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f9050647c6df62f89dfcb82de644627bdbd322c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

/* Volume shader evaluation and sampling. */

#pragma once

#include "kernel/closure/alloc.h"
#include "kernel/closure/bsdf.h"
#include "kernel/closure/bsdf_util.h"
#include "kernel/closure/emissive.h"

#ifdef __SVM__
#  include "kernel/svm/svm.h"
#endif
#ifdef __OSL__
#  include "kernel/osl/osl.h"
#endif

CCL_NAMESPACE_BEGIN

#ifdef __VOLUME__

/* Merging */

ccl_device_inline void volume_shader_merge_closures(ccl_private ShaderData *sd)
{
  /* Merge identical closures to save closure space with stacked volumes. */
  for (int i = 0; i < sd->num_closure; i++) {
    ccl_private ShaderClosure *sci = &sd->closure[i];

    if (sci->type != CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
      continue;
    }

    for (int j = i + 1; j < sd->num_closure; j++) {
      ccl_private ShaderClosure *scj = &sd->closure[j];
      if (sci->type != scj->type) {
        continue;
      }

      ccl_private const HenyeyGreensteinVolume *hgi = (ccl_private const HenyeyGreensteinVolume *)
          sci;
      ccl_private const HenyeyGreensteinVolume *hgj = (ccl_private const HenyeyGreensteinVolume *)
          scj;
      if (!(hgi->g == hgj->g)) {
        continue;
      }

      sci->weight += scj->weight;
      sci->sample_weight += scj->sample_weight;

      int size = sd->num_closure - (j + 1);
      if (size > 0) {
        for (int k = 0; k < size; k++) {
          scj[k] = scj[k + 1];
        }
      }

      sd->num_closure--;
      kernel_assert(sd->num_closure >= 0);
      j--;
    }
  }
}

ccl_device_inline void volume_shader_copy_phases(ccl_private ShaderVolumePhases *ccl_restrict
                                                     phases,
                                                 ccl_private const ShaderData *ccl_restrict sd)
{
  phases->num_closure = 0;

  for (int i = 0; i < sd->num_closure; i++) {
    ccl_private const ShaderClosure *from_sc = &sd->closure[i];
    ccl_private const HenyeyGreensteinVolume *from_hg =
        (ccl_private const HenyeyGreensteinVolume *)from_sc;

    if (from_sc->type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
      ccl_private ShaderVolumeClosure *to_sc = &phases->closure[phases->num_closure];

      to_sc->weight = from_sc->weight;
      to_sc->sample_weight = from_sc->sample_weight;
      to_sc->g = from_hg->g;
      phases->num_closure++;
      if (phases->num_closure >= MAX_VOLUME_CLOSURE) {
        break;
      }
    }
  }
}

/* Guiding */

#  ifdef __PATH_GUIDING__
ccl_device_inline void volume_shader_prepare_guiding(KernelGlobals kg,
                                                     IntegratorState state,
                                                     ccl_private ShaderData *sd,
                                                     ccl_private const RNGState *rng_state,
                                                     const float3 P,
                                                     const float3 D,
                                                     ccl_private ShaderVolumePhases *phases,
                                                     const VolumeSampleMethod direct_sample_method)
{
  /* Have any phase functions to guide? */
  const int num_phases = phases->num_closure;
  if (!kernel_data.integrator.use_volume_guiding || num_phases == 0) {
    state->guiding.use_volume_guiding = false;
    return;
  }

  const float volume_guiding_probability = kernel_data.integrator.volume_guiding_probability;
  float rand_phase_guiding = path_state_rng_1D(kg, rng_state, PRNG_VOLUME_PHASE_GUIDING);

  /* If we have more than one phase function we select one random based on its
   * sample weight to calculate the product distribution for guiding. */
  int phase_id = 0;
  float phase_weight = 1.0f;

  if (num_phases > 1) {
    /* Pick a phase closure based on sample weights. */
    float sum = 0.0f;

    for (phase_id = 0; phase_id < num_phases; phase_id++) {
      ccl_private const ShaderVolumeClosure *svc = &phases->closure[phase_id];
      sum += svc->sample_weight;
    }

    float r = rand_phase_guiding * sum;
    float partial_sum = 0.0f;

    for (phase_id = 0; phase_id < num_phases; phase_id++) {
      ccl_private const ShaderVolumeClosure *svc = &phases->closure[phase_id];
      float next_sum = partial_sum + svc->sample_weight;

      if (r <= next_sum) {
        /* Rescale to reuse. */
        rand_phase_guiding = (r - partial_sum) / svc->sample_weight;
        phase_weight = svc->sample_weight / sum;
        break;
      }

      partial_sum = next_sum;
    }

    /* Adjust the sample weight of the component used for guiding. */
    phases->closure[phase_id].sample_weight *= volume_guiding_probability;
  }

  /* Init guiding for selected phase function. */
  ccl_private const ShaderVolumeClosure *svc = &phases->closure[phase_id];
  if (!guiding_phase_init(kg, state, P, D, svc->g, rand_phase_guiding)) {
    state->guiding.use_volume_guiding = false;
    return;
  }

  state->guiding.use_volume_guiding = true;
  state->guiding.sample_volume_guiding_rand = rand_phase_guiding;
  state->guiding.volume_guiding_sampling_prob = volume_guiding_probability * phase_weight;

  kernel_assert(state->guiding.volume_guiding_sampling_prob > 0.0f &&
                state->guiding.volume_guiding_sampling_prob <= 1.0f);
}
#  endif

/* Phase Evaluation & Sampling */

/* Randomly sample a volume phase function proportional to ShaderClosure.sample_weight. */
ccl_device_inline ccl_private const ShaderVolumeClosure *volume_shader_phase_pick(
    ccl_private const ShaderVolumePhases *phases, ccl_private float2 *rand_phase)
{
  int sampled = 0;

  if (phases->num_closure > 1) {
    /* pick a phase closure based on sample weights */
    float sum = 0.0f;

    for (int i = 0; i < phases->num_closure; i++) {
      ccl_private const ShaderVolumeClosure *svc = &phases->closure[sampled];
      sum += svc->sample_weight;
    }

    float r = (*rand_phase).x * sum;
    float partial_sum = 0.0f;

    for (int i = 0; i < phases->num_closure; i++) {
      ccl_private const ShaderVolumeClosure *svc = &phases->closure[i];
      float next_sum = partial_sum + svc->sample_weight;

      if (r <= next_sum) {
        /* Rescale to reuse for volume phase direction sample. */
        sampled = i;
        (*rand_phase).x = (r - partial_sum) / svc->sample_weight;
        break;
      }

      partial_sum = next_sum;
    }
  }

  /* todo: this isn't quite correct, we don't weight anisotropy properly
   * depending on color channels, even if this is perhaps not a common case */
  return &phases->closure[sampled];
}

ccl_device_inline float _volume_shader_phase_eval_mis(ccl_private const ShaderData *sd,
                                                      ccl_private const ShaderVolumePhases *phases,
                                                      const float3 omega_in,
                                                      int skip_phase,
                                                      ccl_private BsdfEval *result_eval,
                                                      float sum_pdf,
                                                      float sum_sample_weight)
{
  for (int i = 0; i < phases->num_closure; i++) {
    if (i == skip_phase)
      continue;

    ccl_private const ShaderVolumeClosure *svc = &phases->closure[i];
    float phase_pdf = 0.0f;
    Spectrum eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);

    if (phase_pdf != 0.0f) {
      bsdf_eval_accum(result_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
      sum_pdf += phase_pdf * svc->sample_weight;
    }

    sum_sample_weight += svc->sample_weight;
  }

  return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
}

ccl_device float volume_shader_phase_eval(KernelGlobals kg,
                                          ccl_private const ShaderData *sd,
                                          ccl_private const ShaderVolumeClosure *svc,
                                          const float3 omega_in,
                                          ccl_private BsdfEval *phase_eval)
{
  float phase_pdf = 0.0f;
  Spectrum eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);

  if (phase_pdf != 0.0f) {
    bsdf_eval_accum(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
  }

  return phase_pdf;
}

ccl_device float volume_shader_phase_eval(KernelGlobals kg,
                                          IntegratorState state,
                                          ccl_private const ShaderData *sd,
                                          ccl_private const ShaderVolumePhases *phases,
                                          const float3 omega_in,
                                          ccl_private BsdfEval *phase_eval)
{
  bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());

  float pdf = _volume_shader_phase_eval_mis(sd, phases, omega_in, -1, phase_eval, 0.0f, 0.0f);

#  if defined(__PATH_GUIDING__) && PATH_GUIDING_LEVEL >= 4
  if (state->guiding.use_volume_guiding) {
    const float guiding_sampling_prob = state->guiding.volume_guiding_sampling_prob;
    const float guide_pdf = guiding_phase_pdf(kg, state, omega_in);
    pdf = (guiding_sampling_prob * guide_pdf) + (1.0f - guiding_sampling_prob) * pdf;
  }
#  endif

  return pdf;
}

#  ifdef __PATH_GUIDING__
ccl_device int volume_shader_phase_guided_sample(KernelGlobals kg,
                                                 IntegratorState state,
                                                 ccl_private const ShaderData *sd,
                                                 ccl_private const ShaderVolumeClosure *svc,
                                                 const float2 rand_phase,
                                                 ccl_private BsdfEval *phase_eval,
                                                 ccl_private float3 *omega_in,
                                                 ccl_private float *phase_pdf,
                                                 ccl_private float *unguided_phase_pdf,
                                                 ccl_private float *sampled_roughness)
{
  const bool use_volume_guiding = state->guiding.use_volume_guiding;
  const float guiding_sampling_prob = state->guiding.volume_guiding_sampling_prob;

  /* Decide between sampling guiding distribution and phase. */
  float rand_phase_guiding = state->guiding.sample_volume_guiding_rand;
  bool sample_guiding = false;
  if (use_volume_guiding && rand_phase_guiding < guiding_sampling_prob) {
    sample_guiding = true;
    rand_phase_guiding /= guiding_sampling_prob;
  }
  else {
    rand_phase_guiding -= guiding_sampling_prob;
    rand_phase_guiding /= (1.0f - guiding_sampling_prob);
  }

  /* Initialize to zero. */
  int label = LABEL_NONE;
  Spectrum eval = zero_spectrum();

  *unguided_phase_pdf = 0.0f;
  float guide_pdf = 0.0f;
  *sampled_roughness = 1.0f - fabsf(svc->g);

  bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());

  if (sample_guiding) {
    /* Sample guiding distribution. */
    guide_pdf = guiding_phase_sample(kg, state, rand_phase, omega_in);
    *phase_pdf = 0.0f;

    if (guide_pdf != 0.0f) {
      *unguided_phase_pdf = volume_shader_phase_eval(kg, sd, svc, *omega_in, phase_eval);
      *phase_pdf = (guiding_sampling_prob * guide_pdf) +
                   ((1.0f - guiding_sampling_prob) * (*unguided_phase_pdf));
      label = LABEL_VOLUME_SCATTER;
    }
  }
  else {
    /* Sample phase. */
    *phase_pdf = 0.0f;
    label = volume_phase_sample(
        sd, svc, rand_phase.x, rand_phase.y, &eval, omega_in, unguided_phase_pdf);

    if (*unguided_phase_pdf != 0.0f) {
      bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);

      *phase_pdf = *unguided_phase_pdf;
      if (use_volume_guiding) {
        guide_pdf = guiding_phase_pdf(kg, state, *omega_in);
        *phase_pdf *= 1.0f - guiding_sampling_prob;
        *phase_pdf += guiding_sampling_prob * guide_pdf;
      }

      kernel_assert(reduce_min(bsdf_eval_sum(phase_eval)) >= 0.0f);
    }
    else {
      bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, zero_spectrum());
    }

    kernel_assert(reduce_min(bsdf_eval_sum(phase_eval)) >= 0.0f);
  }

  return label;
}
#  endif

ccl_device int volume_shader_phase_sample(KernelGlobals kg,
                                          ccl_private const ShaderData *sd,
                                          ccl_private const ShaderVolumePhases *phases,
                                          ccl_private const ShaderVolumeClosure *svc,
                                          float2 rand_phase,
                                          ccl_private BsdfEval *phase_eval,
                                          ccl_private float3 *omega_in,
                                          ccl_private float *pdf,
                                          ccl_private float *sampled_roughness)
{
  *sampled_roughness = 1.0f - fabsf(svc->g);
  Spectrum eval = zero_spectrum();

  *pdf = 0.0f;
  int label = volume_phase_sample(sd, svc, rand_phase.x, rand_phase.y, &eval, omega_in, pdf);

  if (*pdf != 0.0f) {
    bsdf_eval_init(phase_eval, CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID, eval);
  }

  return label;
}

/* Motion Blur */

#  ifdef __OBJECT_MOTION__
ccl_device_inline void volume_shader_motion_blur(KernelGlobals kg,
                                                 ccl_private ShaderData *ccl_restrict sd)
{
  if ((sd->object_flag & SD_OBJECT_HAS_VOLUME_MOTION) == 0) {
    return;
  }

  AttributeDescriptor v_desc = find_attribute(kg, sd, ATTR_STD_VOLUME_VELOCITY);
  kernel_assert(v_desc.offset != ATTR_STD_NOT_FOUND);

  const float3 P = sd->P;
  const float velocity_scale = kernel_data_fetch(objects, sd->object).velocity_scale;
  const float time_offset = kernel_data.cam.motion_position == MOTION_POSITION_CENTER ? 0.5f :
                                                                                        0.0f;
  const float time = kernel_data.cam.motion_position == MOTION_POSITION_END ?
                         (1.0f - kernel_data.cam.shuttertime) + sd->time :
                         sd->time;

  /* Use a 1st order semi-lagrangian advection scheme to estimate what volume quantity
   * existed, or will exist, at the given time:
   *
   * `phi(x, T) = phi(x - (T - t) * u(x, T), t)`
   *
   * where
   *
   * x : position
   * T : super-sampled time (or ray time)
   * t : current time of the simulation (in rendering we assume this is center frame with
   * relative time = 0)
   * phi : the volume quantity
   * u : the velocity field
   *
   * But first we need to determine the velocity field `u(x, T)`, which we can estimate also
   * using semi-lagrangian advection.
   *
   * `u(x, T) = u(x - (T - t) * u(x, T), t)`
   *
   * This is the typical way to model self-advection in fluid dynamics, however, we do not
   * account for other forces affecting the velocity during simulation (pressure, buoyancy,
   * etc.): this gives a linear interpolation when fluid are mostly "curvy". For better
   * results, a higher order interpolation scheme can be used (at the cost of more lookups),
   * or an interpolation of the velocity fields for the previous and next frames could also
   * be used to estimate `u(x, T)` (which will cost more memory and lookups).
   *
   * References:
   * "Eulerian Motion Blur", Kim and Ko, 2007
   * "Production Volume Rendering", Wreninge et al., 2012
   */

  /* Find velocity. */
  float3 velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
  object_dir_transform(kg, sd, &velocity);

  /* Find advected P. */
  sd->P = P - (time - time_offset) * velocity_scale * velocity;

  /* Find advected velocity. */
  velocity = primitive_volume_attribute_float3(kg, sd, v_desc);
  object_dir_transform(kg, sd, &velocity);

  /* Find advected P. */
  sd->P = P - (time - time_offset) * velocity_scale * velocity;
}
#  endif

/* Volume Evaluation */

template<const bool shadow, typename StackReadOp, typename ConstIntegratorGenericState>
ccl_device_inline void volume_shader_eval(KernelGlobals kg,
                                          ConstIntegratorGenericState state,
                                          ccl_private ShaderData *ccl_restrict sd,
                                          const uint32_t path_flag,
                                          StackReadOp stack_read)
{
  /* If path is being terminated, we are tracing a shadow ray or evaluating
   * emission, then we don't need to store closures. The emission and shadow
   * shader data also do not have a closure array to save GPU memory. */
  int max_closures;
  if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
    max_closures = 0;
  }
  else {
    max_closures = kernel_data.max_closures;
  }

  /* reset closures once at the start, we will be accumulating the closures
   * for all volumes in the stack into a single array of closures */
  sd->num_closure = 0;
  sd->num_closure_left = max_closures;
  sd->flag = 0;
  sd->object_flag = 0;

  for (int i = 0;; i++) {
    const VolumeStack entry = stack_read(i);
    if (entry.shader == SHADER_NONE) {
      break;
    }

    /* Setup shader-data from stack. it's mostly setup already in
     * shader_setup_from_volume, this switching should be quick. */
    sd->object = entry.object;
    sd->lamp = LAMP_NONE;
    sd->shader = entry.shader;

    sd->flag &= ~SD_SHADER_FLAGS;
    sd->flag |= kernel_data_fetch(shaders, (sd->shader & SHADER_MASK)).flags;
    sd->object_flag &= ~SD_OBJECT_FLAGS;

    if (sd->object != OBJECT_NONE) {
      sd->object_flag |= kernel_data_fetch(object_flag, sd->object);

#  ifdef __OBJECT_MOTION__
      /* todo: this is inefficient for motion blur, we should be
       * caching matrices instead of recomputing them each step */
      shader_setup_object_transforms(kg, sd, sd->time);

      volume_shader_motion_blur(kg, sd);
#  endif
    }

    /* evaluate shader */
#  ifdef __OSL__
    if (kernel_data.kernel_features & KERNEL_FEATURE_OSL) {
      osl_eval_nodes<SHADER_TYPE_VOLUME>(kg, state, sd, path_flag);
    }
    else
#  endif
    {
#  ifdef __SVM__
      svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_VOLUME, SHADER_TYPE_VOLUME>(
          kg, state, sd, NULL, path_flag);
#  endif
    }

    /* Merge closures to avoid exceeding number of closures limit. */
    if (!shadow) {
      if (i > 0) {
        volume_shader_merge_closures(sd);
      }
    }
  }
}

#endif /* __VOLUME__ */

CCL_NAMESPACE_END