Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_accumulate.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9ed16aceb55d563e9b4c4841d3da1a89e2711cb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* BSDF Eval
 *
 * BSDF evaluation result, split per BSDF type. This is used to accumulate
 * render passes separately. */

ccl_device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 value, int use_light_pass)
{
#ifdef __PASSES__
	eval->use_light_pass = use_light_pass;

	if(eval->use_light_pass) {
		eval->diffuse = make_float3(0.0f, 0.0f, 0.0f);
		eval->glossy = make_float3(0.0f, 0.0f, 0.0f);
		eval->transmission = make_float3(0.0f, 0.0f, 0.0f);
		eval->transparent = make_float3(0.0f, 0.0f, 0.0f);
		eval->subsurface = make_float3(0.0f, 0.0f, 0.0f);
		eval->scatter = make_float3(0.0f, 0.0f, 0.0f);

		if(type == CLOSURE_BSDF_TRANSPARENT_ID)
			eval->transparent = value;
		else if(CLOSURE_IS_BSDF_DIFFUSE(type))
			eval->diffuse = value;
		else if(CLOSURE_IS_BSDF_GLOSSY(type))
			eval->glossy = value;
		else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
			eval->transmission = value;
		else if(CLOSURE_IS_BSDF_BSSRDF(type))
			eval->subsurface = value;
		else if(CLOSURE_IS_PHASE(type))
			eval->scatter = value;
	}
	else
#endif
	{
		eval->diffuse = value;
	}
#ifdef __SHADOW_TRICKS__
	eval->sum_no_mis = make_float3(0.0f, 0.0f, 0.0f);
#endif
}

ccl_device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value, float mis_weight)
{
#ifdef __SHADOW_TRICKS__
	eval->sum_no_mis += value;
#endif
	value *= mis_weight;
#ifdef __PASSES__
	if(eval->use_light_pass) {
		if(CLOSURE_IS_BSDF_DIFFUSE(type))
			eval->diffuse += value;
		else if(CLOSURE_IS_BSDF_GLOSSY(type))
			eval->glossy += value;
		else if(CLOSURE_IS_BSDF_TRANSMISSION(type))
			eval->transmission += value;
		else if(CLOSURE_IS_BSDF_BSSRDF(type))
			eval->subsurface += value;
		else if(CLOSURE_IS_PHASE(type))
			eval->scatter += value;

		/* skipping transparent, this function is used by for eval(), will be zero then */
	}
	else
#endif
	{
		eval->diffuse += value;
	}
}

ccl_device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
{
#ifdef __PASSES__
	if(eval->use_light_pass) {
		return is_zero(eval->diffuse)
			&& is_zero(eval->glossy)
			&& is_zero(eval->transmission)
			&& is_zero(eval->transparent)
			&& is_zero(eval->subsurface)
			&& is_zero(eval->scatter);
	}
	else
#endif
	{
		return is_zero(eval->diffuse);
	}
}

ccl_device_inline void bsdf_eval_mis(BsdfEval *eval, float value)
{
#ifdef __PASSES__
	if(eval->use_light_pass) {
		eval->diffuse *= value;
		eval->glossy *= value;
		eval->transmission *= value;
		eval->subsurface *= value;
		eval->scatter *= value;

		/* skipping transparent, this function is used by for eval(), will be zero then */
	}
	else
#endif
	{
		eval->diffuse *= value;
	}
}

ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
{
#ifdef __SHADOW_TRICKS__
	eval->sum_no_mis *= value;
#endif
	bsdf_eval_mis(eval, value);
}

ccl_device_inline void bsdf_eval_mul3(BsdfEval *eval, float3 value)
{
#ifdef __SHADOW_TRICKS__
	eval->sum_no_mis *= value;
#endif
#ifdef __PASSES__
	if(eval->use_light_pass) {
		eval->diffuse *= value;
		eval->glossy *= value;
		eval->transmission *= value;
		eval->subsurface *= value;
		eval->scatter *= value;

		/* skipping transparent, this function is used by for eval(), will be zero then */
	}
	else
		eval->diffuse *= value;
#else
	eval->diffuse *= value;
#endif
}

ccl_device_inline float3 bsdf_eval_sum(const BsdfEval *eval)
{
#ifdef __PASSES__
	if(eval->use_light_pass) {
		return eval->diffuse + eval->glossy + eval->transmission + eval->subsurface + eval->scatter;
	}
	else
#endif
	return eval->diffuse;
}

/* Path Radiance
 *
 * We accumulate different render passes separately. After summing at the end
 * to get the combined result, it should be identical. We definite directly
 * visible as the first non-transparent hit, while indirectly visible are the
 * bounces after that. */

ccl_device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
{
	/* clear all */
#ifdef __PASSES__
	L->use_light_pass = use_light_pass;

	if(use_light_pass) {
		L->indirect = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_throughput = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);

		L->color_diffuse = make_float3(0.0f, 0.0f, 0.0f);
		L->color_glossy = make_float3(0.0f, 0.0f, 0.0f);
		L->color_transmission = make_float3(0.0f, 0.0f, 0.0f);
		L->color_subsurface = make_float3(0.0f, 0.0f, 0.0f);
		L->color_scatter = make_float3(0.0f, 0.0f, 0.0f);

		L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
		L->direct_scatter = make_float3(0.0f, 0.0f, 0.0f);

		L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
		L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
		L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
		L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
		L->indirect_scatter = make_float3(0.0f, 0.0f, 0.0f);

		L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
		L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
		L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
		L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
		L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);

		L->emission = make_float3(0.0f, 0.0f, 0.0f);
		L->background = make_float3(0.0f, 0.0f, 0.0f);
		L->ao = make_float3(0.0f, 0.0f, 0.0f);
		L->shadow = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
		L->mist = 0.0f;
	}
	else
#endif
	{
		L->emission = make_float3(0.0f, 0.0f, 0.0f);
	}

#ifdef __SHADOW_TRICKS__
	L->path_total = make_float3(0.0f, 0.0f, 0.0f);
	L->path_total_shaded = make_float3(0.0f, 0.0f, 0.0f);
	L->shadow_background_color = make_float3(0.0f, 0.0f, 0.0f);
	L->shadow_radiance_sum = make_float3(0.0f, 0.0f, 0.0f);
	L->shadow_throughput = 0.0f;
#endif

#ifdef __DENOISING_FEATURES__
	L->denoising_normal = make_float3(0.0f, 0.0f, 0.0f);
	L->denoising_albedo = make_float3(0.0f, 0.0f, 0.0f);
	L->denoising_depth = 0.0f;
#endif  /* __DENOISING_FEATURES__ */
}

ccl_device_inline void path_radiance_bsdf_bounce(PathRadiance *L, ccl_addr_space float3 *throughput,
	BsdfEval *bsdf_eval, float bsdf_pdf, int bounce, int bsdf_label)
{
	float inverse_pdf = 1.0f/bsdf_pdf;

#ifdef __PASSES__
	if(L->use_light_pass) {
		if(bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
			/* first on directly visible surface */
			float3 value = *throughput*inverse_pdf;

			L->path_diffuse = bsdf_eval->diffuse*value;
			L->path_glossy = bsdf_eval->glossy*value;
			L->path_transmission = bsdf_eval->transmission*value;
			L->path_subsurface = bsdf_eval->subsurface*value;
			L->path_scatter = bsdf_eval->scatter*value;

			*throughput = L->path_diffuse + L->path_glossy + L->path_transmission + L->path_subsurface + L->path_scatter;
			
			L->direct_throughput = *throughput;
		}
		else {
			/* transparent bounce before first hit, or indirectly visible through BSDF */
			float3 sum = (bsdf_eval_sum(bsdf_eval) + bsdf_eval->transparent) * inverse_pdf;
			*throughput *= sum;
		}
	}
	else
#endif
	{
		*throughput *= bsdf_eval->diffuse*inverse_pdf;
	}
}

ccl_device_inline void path_radiance_accum_emission(PathRadiance *L, float3 throughput, float3 value, int bounce)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		if(bounce == 0)
			L->emission += throughput*value;
		else if(bounce == 1)
			L->direct_emission += throughput*value;
		else
			L->indirect += throughput*value;
	}
	else
#endif
	{
		L->emission += throughput*value;
	}
}

ccl_device_inline void path_radiance_accum_ao(PathRadiance *L,
                                              ccl_addr_space PathState *state,
                                              float3 throughput,
                                              float3 alpha,
                                              float3 bsdf,
                                              float3 ao)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		if(state->bounce == 0) {
			/* directly visible lighting */
			L->direct_diffuse += throughput*bsdf*ao;
			L->ao += alpha*throughput*ao;
		}
		else {
			/* indirectly visible lighting after BSDF bounce */
			L->indirect += throughput*bsdf*ao;
		}
	}
	else
#endif
	{
		L->emission += throughput*bsdf*ao;
	}

#ifdef __SHADOW_TRICKS__
	if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
		float3 light = throughput * bsdf;
		L->path_total += light;
		L->path_total_shaded += ao * light;
	}
#endif
}

ccl_device_inline void path_radiance_accum_total_ao(
        PathRadiance *L,
        ccl_addr_space PathState *state,
        float3 throughput,
        float3 bsdf)
{
#ifdef __SHADOW_TRICKS__
	if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
		L->path_total += throughput * bsdf;
	}
#else
	(void) L;
	(void) state;
	(void) throughput;
	(void) bsdf;
#endif
}

ccl_device_inline void path_radiance_accum_light(PathRadiance *L,
                                                 ccl_addr_space PathState *state,
                                                 float3 throughput,
                                                 BsdfEval *bsdf_eval,
                                                 float3 shadow,
                                                 float shadow_fac,
                                                 bool is_lamp)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		if(state->bounce == 0) {
			/* directly visible lighting */
			L->direct_diffuse += throughput*bsdf_eval->diffuse*shadow;
			L->direct_glossy += throughput*bsdf_eval->glossy*shadow;
			L->direct_transmission += throughput*bsdf_eval->transmission*shadow;
			L->direct_subsurface += throughput*bsdf_eval->subsurface*shadow;
			L->direct_scatter += throughput*bsdf_eval->scatter*shadow;

			if(is_lamp) {
				L->shadow.x += shadow.x*shadow_fac;
				L->shadow.y += shadow.y*shadow_fac;
				L->shadow.z += shadow.z*shadow_fac;
			}
		}
		else {
			/* indirectly visible lighting after BSDF bounce */
			L->indirect += throughput*bsdf_eval_sum(bsdf_eval)*shadow;
		}
	}
	else
#endif
	{
		L->emission += throughput*bsdf_eval->diffuse*shadow;
	}

#ifdef __SHADOW_TRICKS__
	if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
		float3 light = throughput * bsdf_eval->sum_no_mis;
		L->path_total += light;
		L->path_total_shaded += shadow * light;
	}
#endif
}

ccl_device_inline void path_radiance_accum_total_light(
        PathRadiance *L,
        ccl_addr_space PathState *state,
        float3 throughput,
        const BsdfEval *bsdf_eval)
{
#ifdef __SHADOW_TRICKS__
	if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
		L->path_total += throughput * bsdf_eval->sum_no_mis;
	}
#else
	(void) L;
	(void) state;
	(void) throughput;
	(void) bsdf_eval;
#endif
}

ccl_device_inline void path_radiance_accum_background(PathRadiance *L,
                                                      ccl_addr_space PathState *state,
                                                      float3 throughput,
                                                      float3 value)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		if(state->bounce == 0)
			L->background += throughput*value;
		else if(state->bounce == 1)
			L->direct_emission += throughput*value;
		else
			L->indirect += throughput*value;
	}
	else
#endif
	{
		L->emission += throughput*value;
	}

#ifdef __SHADOW_TRICKS__
	if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
		L->path_total += throughput * value;
		if(state->flag & PATH_RAY_SHADOW_CATCHER_ONLY) {
			L->path_total_shaded += throughput * value;
		}
	}
#endif

#ifdef __DENOISING_FEATURES__
	L->denoising_albedo += state->denoising_feature_weight * value;
#endif  /* __DENOISING_FEATURES__ */
}

ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
{
#ifdef __PASSES__
	/* this division is a bit ugly, but means we only have to keep track of
	 * only a single throughput further along the path, here we recover just
	 * the indirect path that is not influenced by any particular BSDF type */
	if(L->use_light_pass) {
		L->direct_emission = safe_divide_color(L->direct_emission, L->direct_throughput);
		L->direct_diffuse += L->path_diffuse*L->direct_emission;
		L->direct_glossy += L->path_glossy*L->direct_emission;
		L->direct_transmission += L->path_transmission*L->direct_emission;
		L->direct_subsurface += L->path_subsurface*L->direct_emission;
		L->direct_scatter += L->path_scatter*L->direct_emission;

		L->indirect = safe_divide_color(L->indirect, L->direct_throughput);
		L->indirect_diffuse += L->path_diffuse*L->indirect;
		L->indirect_glossy += L->path_glossy*L->indirect;
		L->indirect_transmission += L->path_transmission*L->indirect;
		L->indirect_subsurface += L->path_subsurface*L->indirect;
		L->indirect_scatter += L->path_scatter*L->indirect;
	}
#endif
}

ccl_device_inline void path_radiance_reset_indirect(PathRadiance *L)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
		L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
		L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
		L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
		L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);

		L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
		L->indirect = make_float3(0.0f, 0.0f, 0.0f);
	}
#endif
}

ccl_device_inline void path_radiance_copy_indirect(PathRadiance *L,
                                                   const PathRadiance *L_src)
{
#ifdef __PASSES__
	if(L->use_light_pass) {
		L->path_diffuse = L_src->path_diffuse;
		L->path_glossy = L_src->path_glossy;
		L->path_transmission = L_src->path_transmission;
		L->path_subsurface = L_src->path_subsurface;
		L->path_scatter = L_src->path_scatter;

		L->direct_emission = L_src->direct_emission;
		L->indirect = L_src->indirect;
	}
#endif
}

ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadiance *L)
{
	float3 L_sum;
	/* Light Passes are used */
#ifdef __PASSES__
	float3 L_direct, L_indirect;
	float clamp_direct = kernel_data.integrator.sample_clamp_direct;
	float clamp_indirect = kernel_data.integrator.sample_clamp_indirect;
	if(L->use_light_pass) {
		path_radiance_sum_indirect(L);

		L_direct = L->direct_diffuse + L->direct_glossy + L->direct_transmission + L->direct_subsurface + L->direct_scatter + L->emission;
		L_indirect = L->indirect_diffuse + L->indirect_glossy + L->indirect_transmission + L->indirect_subsurface + L->indirect_scatter;

		if(!kernel_data.background.transparent)
			L_direct += L->background;

		L_sum = L_direct + L_indirect;
		float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);

		/* Reject invalid value */
		if(!isfinite_safe(sum)) {
			kernel_assert(!"Non-finite sum in path_radiance_clamp_and_sum!");
			L_sum = make_float3(0.0f, 0.0f, 0.0f);

			L->direct_diffuse = make_float3(0.0f, 0.0f, 0.0f);
			L->direct_glossy = make_float3(0.0f, 0.0f, 0.0f);
			L->direct_transmission = make_float3(0.0f, 0.0f, 0.0f);
			L->direct_subsurface = make_float3(0.0f, 0.0f, 0.0f);
			L->direct_scatter = make_float3(0.0f, 0.0f, 0.0f);

			L->indirect_diffuse = make_float3(0.0f, 0.0f, 0.0f);
			L->indirect_glossy = make_float3(0.0f, 0.0f, 0.0f);
			L->indirect_transmission = make_float3(0.0f, 0.0f, 0.0f);
			L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
			L->indirect_scatter = make_float3(0.0f, 0.0f, 0.0f);

			L->emission = make_float3(0.0f, 0.0f, 0.0f);
		}

		/* Clamp direct and indirect samples */
#ifdef __CLAMP_SAMPLE__
		else if(sum > clamp_direct || sum > clamp_indirect) {
			float scale;

			/* Direct */
			float sum_direct = fabsf(L_direct.x) + fabsf(L_direct.y) + fabsf(L_direct.z);
			if(sum_direct > clamp_direct) {
				scale = clamp_direct/sum_direct;
				L_direct *= scale;

				L->direct_diffuse *= scale;
				L->direct_glossy *= scale;
				L->direct_transmission *= scale;
				L->direct_subsurface *= scale;
				L->direct_scatter *= scale;
				L->emission *= scale;
				L->background *= scale;
			}

			/* Indirect */
			float sum_indirect = fabsf(L_indirect.x) + fabsf(L_indirect.y) + fabsf(L_indirect.z);
			if(sum_indirect > clamp_indirect) {
				scale = clamp_indirect/sum_indirect;
				L_indirect *= scale;

				L->indirect_diffuse *= scale;
				L->indirect_glossy *= scale;
				L->indirect_transmission *= scale;
				L->indirect_subsurface *= scale;
				L->indirect_scatter *= scale;
			}

			/* Sum again, after clamping */
			L_sum = L_direct + L_indirect;
		}
#endif

		return L_sum;
	}

	/* No Light Passes */
	else
#endif
	{
		L_sum = L->emission;
	}

	/* Reject invalid value */
	float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
	if(!isfinite_safe(sum)) {
		kernel_assert(!"Non-finite final sum in path_radiance_clamp_and_sum!");
		L_sum = make_float3(0.0f, 0.0f, 0.0f);
	}

	return L_sum;
}

ccl_device_inline void path_radiance_split_denoising(KernelGlobals *kg, PathRadiance *L, float3 *noisy, float3 *clean)
{
#ifdef __PASSES__
	kernel_assert(L->use_light_pass);

	*clean = L->emission + L->background;
	*noisy = L->direct_scatter + L->indirect_scatter;

#  define ADD_COMPONENT(flag, component)     \
	if(kernel_data.film.denoising_flags & flag) \
		*clean += component;                 \
	else                                     \
		*noisy += component;

	ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_DIR,      L->direct_diffuse);
	ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_IND,      L->indirect_diffuse);
	ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_DIR,       L->direct_glossy);
	ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_IND,       L->indirect_glossy);
	ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_DIR, L->direct_transmission);
	ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_IND, L->indirect_transmission);
	ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_DIR,   L->direct_subsurface);
	ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_IND,   L->indirect_subsurface);
#  undef ADD_COMPONENT
#else
	*noisy = L->emission;
	*clean = make_float3(0.0f, 0.0f, 0.0f);
#endif

	*noisy = ensure_finite3(*noisy);
	*clean = ensure_finite3(*clean);
}

ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample, int num_samples)
{
	float fac = 1.0f/num_samples;

#ifdef __SPLIT_KERNEL__
#  define safe_float3_add(f, v) \
	do { \
		ccl_global float *p = (ccl_global float*)(&(f)); \
		atomic_add_and_fetch_float(p+0, (v).x); \
		atomic_add_and_fetch_float(p+1, (v).y); \
		atomic_add_and_fetch_float(p+2, (v).z); \
	} while(0)
#else
#  define safe_float3_add(f, v) (f) += (v)
#endif  /* __SPLIT_KERNEL__ */

#ifdef __PASSES__
	safe_float3_add(L->direct_diffuse, L_sample->direct_diffuse*fac);
	safe_float3_add(L->direct_glossy, L_sample->direct_glossy*fac);
	safe_float3_add(L->direct_transmission, L_sample->direct_transmission*fac);
	safe_float3_add(L->direct_subsurface, L_sample->direct_subsurface*fac);
	safe_float3_add(L->direct_scatter, L_sample->direct_scatter*fac);

	safe_float3_add(L->indirect_diffuse, L_sample->indirect_diffuse*fac);
	safe_float3_add(L->indirect_glossy, L_sample->indirect_glossy*fac);
	safe_float3_add(L->indirect_transmission, L_sample->indirect_transmission*fac);
	safe_float3_add(L->indirect_subsurface, L_sample->indirect_subsurface*fac);
	safe_float3_add(L->indirect_scatter, L_sample->indirect_scatter*fac);

	safe_float3_add(L->background, L_sample->background*fac);
	safe_float3_add(L->ao, L_sample->ao*fac);
	safe_float3_add(L->shadow, L_sample->shadow*fac);
#  ifdef __SPLIT_KERNEL__
	atomic_add_and_fetch_float(&L->mist, L_sample->mist*fac);
#  else
	L->mist += L_sample->mist*fac;
#  endif  /* __SPLIT_KERNEL__ */
#endif  /* __PASSES__ */
	safe_float3_add(L->emission, L_sample->emission*fac);

#undef safe_float3_add
}

#ifdef __SHADOW_TRICKS__
/* Calculate current shadow of the path. */
ccl_device_inline float path_radiance_sum_shadow(const PathRadiance *L)
{
	float path_total = average(L->path_total);
	float path_total_shaded = average(L->path_total_shaded);
	if(path_total != 0.0f) {
		return path_total_shaded / path_total;
	}
	return 1.0f;
}

/* Calculate final light sum and transparency for shadow catcher object. */
ccl_device_inline float3 path_radiance_sum_shadowcatcher(KernelGlobals *kg,
                                                         const PathRadiance *L,
                                                         float* alpha)
{
	const float shadow = path_radiance_sum_shadow(L);
	float3 L_sum;
	if(kernel_data.background.transparent) {
		*alpha = 1.0f - L->shadow_throughput * shadow;
		L_sum = L->shadow_radiance_sum;
	}
	else {
		L_sum = L->shadow_background_color * L->shadow_throughput * shadow +
		        L->shadow_radiance_sum;
	}
	return L_sum;
}
#endif

CCL_NAMESPACE_END