Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_bvh.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 34a44af8b8d974c8a0b18ee6d54280941ca92c6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 * Adapted from code Copyright 2009-2010 NVIDIA Corporation
 * Modifications Copyright 2011, Blender Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/*
 * "Persistent while-while kernel" used in:
 *
 * "Understanding the Efficiency of Ray Traversal on GPUs",
 * Timo Aila and Samuli Laine,
 * Proc. High-Performance Graphics 2009
 */

/* bottom-most stack entry, indicating the end of traversal */

#define ENTRYPOINT_SENTINEL 0x76543210
/* 64 object BVH + 64 mesh BVH + 64 object node splitting */
#define BVH_STACK_SIZE 192
#define BVH_NODE_SIZE 4
#define TRI_NODE_SIZE 3

/* silly workaround for float extended precision that happens when compiling
 * without sse support on x86, it results in different results for float ops
 * that you would otherwise expect to compare correctly */
#if !defined(__i386__) || defined(__SSE__)
#define NO_EXTENDED_PRECISION
#else
#define NO_EXTENDED_PRECISION volatile
#endif

__device_inline float3 bvh_inverse_direction(float3 dir)
{
	/* avoid divide by zero (ooeps = exp2f(-80.0f)) */
	float ooeps = 0.00000000000000000000000082718061255302767487140869206996285356581211090087890625f;
	float3 idir;

	idir.x = 1.0f/((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x));
	idir.y = 1.0f/((fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y));
	idir.z = 1.0f/((fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z));

	return idir;
}

__device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
	Transform tfm = object_fetch_transform(kg, object, ray->time, OBJECT_INVERSE_TRANSFORM);

	*P = transform_point(&tfm, ray->P);

	float3 dir = transform_direction(&tfm, ray->D);

	float len;
	dir = normalize_len(dir, &len);

	*idir = bvh_inverse_direction(dir);

	if(*t != FLT_MAX)
		*t *= len;
}

__device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
	if(*t != FLT_MAX) {
		Transform tfm = object_fetch_transform(kg, object, ray->time, OBJECT_TRANSFORM);
		*t *= len(transform_direction(&tfm, 1.0f/(*idir)));
	}

	*P = ray->P;
	*idir = bvh_inverse_direction(ray->D);
}

/* intersect two bounding boxes */
__device_inline void bvh_node_intersect(KernelGlobals *kg,
	bool *traverseChild0, bool *traverseChild1,
	bool *closestChild1, int *nodeAddr0, int *nodeAddr1,
	float3 P, float3 idir, float t, uint visibility, int nodeAddr)
{
	/* fetch node data */
	float4 n0xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0);
	float4 n1xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1);
	float4 nz = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2);
	float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3);

	/* intersect ray against child nodes */
	float3 ood = P * idir;
	float c0lox = n0xy.x * idir.x - ood.x;
	float c0hix = n0xy.y * idir.x - ood.x;
	float c0loy = n0xy.z * idir.y - ood.y;
	float c0hiy = n0xy.w * idir.y - ood.y;
	float c0loz = nz.x * idir.z - ood.z;
	float c0hiz = nz.y * idir.z - ood.z;
	NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
	NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);

	float c1loz = nz.z * idir.z - ood.z;
	float c1hiz = nz.w * idir.z - ood.z;
	float c1lox = n1xy.x * idir.x - ood.x;
	float c1hix = n1xy.y * idir.x - ood.x;
	float c1loy = n1xy.z * idir.y - ood.y;
	float c1hiy = n1xy.w * idir.y - ood.y;
	NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
	NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);

	/* decide which nodes to traverse next */
#ifdef __VISIBILITY_FLAG__
	/* this visibility test gives a 5% performance hit, how to solve? */
	*traverseChild0 = (c0max >= c0min) && (__float_as_int(cnodes.z) & visibility);
	*traverseChild1 = (c1max >= c1min) && (__float_as_int(cnodes.w) & visibility);
#else
	*traverseChild0 = (c0max >= c0min);
	*traverseChild1 = (c1max >= c1min);
#endif

	*nodeAddr0 = __float_as_int(cnodes.x);
	*nodeAddr1 = __float_as_int(cnodes.y);

	*closestChild1 = (c1min < c0min);
}

/* Sven Woop's algorithm */
__device_inline void bvh_triangle_intersect(KernelGlobals *kg, Intersection *isect,
	float3 P, float3 idir, uint visibility, int object, int triAddr)
{
	/* compute and check intersection t-value */
	float4 v00 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0);
	float4 v11 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1);
	float3 dir = 1.0f/idir;

	float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
	float invDz = 1.0f/(dir.x*v00.x + dir.y*v00.y + dir.z*v00.z);
	float t = Oz * invDz;

	if(t > 0.0f && t < isect->t) {
		/* compute and check barycentric u */
		float Ox = v11.w + P.x*v11.x + P.y*v11.y + P.z*v11.z;
		float Dx = dir.x*v11.x + dir.y*v11.y + dir.z*v11.z;
		float u = Ox + t*Dx;

		if(u >= 0.0f) {
			/* compute and check barycentric v */
			float4 v22 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2);
			float Oy = v22.w + P.x*v22.x + P.y*v22.y + P.z*v22.z;
			float Dy = dir.x*v22.x + dir.y*v22.y + dir.z*v22.z;
			float v = Oy + t*Dy;

			if(v >= 0.0f && u + v <= 1.0f) {
#ifdef __VISIBILITY_FLAG__
				/* visibility flag test. we do it here under the assumption
				 * that most triangles are culled by node flags */
				if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
#endif
				{
					/* record intersection */
					isect->prim = triAddr;
					isect->object = object;
					isect->u = u;
					isect->v = v;
					isect->t = t;
				}
			}
		}
	}
}

__device_inline bool scene_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect)
{
	/* traversal stack in CUDA thread-local memory */
	int traversalStack[BVH_STACK_SIZE];
	traversalStack[0] = ENTRYPOINT_SENTINEL;

	/* traversal variables in registers */
	int stackPtr = 0;
	int nodeAddr = kernel_data.bvh.root;

	/* ray parameters in registers */
	const float tmax = ray->t;
	float3 P = ray->P;
	float3 idir = bvh_inverse_direction(ray->D);
	int object = ~0;

	isect->t = tmax;
	isect->object = ~0;
	isect->prim = ~0;
	isect->u = 0.0f;
	isect->v = 0.0f;

	/* traversal loop */
	do {
		do
		{
			/* traverse internal nodes */
			while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL)
			{
				bool traverseChild0, traverseChild1, closestChild1;
				int nodeAddrChild1;

				bvh_node_intersect(kg, &traverseChild0, &traverseChild1,
					&closestChild1, &nodeAddr, &nodeAddrChild1,
					P, idir, isect->t, visibility, nodeAddr);

				if(traverseChild0 != traverseChild1) {
					/* one child was intersected */
					if(traverseChild1) {
						nodeAddr = nodeAddrChild1;
					}
				}
				else {
					if(!traverseChild0) {
						/* neither child was intersected */
						nodeAddr = traversalStack[stackPtr];
						--stackPtr;
					}
					else {
						/* both children were intersected, push the farther one */
						if(closestChild1) {
							int tmp = nodeAddr;
							nodeAddr = nodeAddrChild1;
							nodeAddrChild1 = tmp;
						}

						++stackPtr;
						traversalStack[stackPtr] = nodeAddrChild1;
					}
				}
			}

			/* if node is leaf, fetch triangle list */
			if(nodeAddr < 0) {
				float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1));
				int primAddr = __float_as_int(leaf.x);

#ifdef __INSTANCING__
				if(primAddr >= 0) {
#endif
					int primAddr2 = __float_as_int(leaf.y);

					/* pop */
					nodeAddr = traversalStack[stackPtr];
					--stackPtr;

					/* triangle intersection */
					while(primAddr < primAddr2) {
						/* intersect ray against triangle */
						bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr);

						/* shadow ray early termination */
						if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0)
							return true;

						primAddr++;
					}
#ifdef __INSTANCING__
				}
				else {
					/* instance push */
					object = kernel_tex_fetch(__prim_object, -primAddr-1);

					bvh_instance_push(kg, object, ray, &P, &idir, &isect->t, tmax);

					++stackPtr;
					traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;

					nodeAddr = kernel_tex_fetch(__object_node, object);
				}
#endif
			}
		} while(nodeAddr != ENTRYPOINT_SENTINEL);

#ifdef __INSTANCING__
		if(stackPtr >= 0) {
			kernel_assert(object != ~0);

			/* instance pop */
			bvh_instance_pop(kg, object, ray, &P, &idir, &isect->t, tmax);
			object = ~0;
			nodeAddr = traversalStack[stackPtr];
			--stackPtr;
		}
#endif
	} while(nodeAddr != ENTRYPOINT_SENTINEL);

	return (isect->prim != ~0);
}

__device_inline float3 ray_offset(float3 P, float3 Ng)
{
#ifdef __INTERSECTION_REFINE__
	const float epsilon_f = 1e-5f;
	const int epsilon_i = 32;

	float3 res;

	/* x component */
	if(fabsf(P.x) < epsilon_f) {
		res.x = P.x + Ng.x*epsilon_f;
	}
	else {
		uint ix = __float_as_uint(P.x);
		ix += ((ix ^ __float_as_uint(Ng.x)) >> 31)? -epsilon_i: epsilon_i;
		res.x = __uint_as_float(ix);
	}

	/* y component */
	if(fabsf(P.y) < epsilon_f) {
		res.y = P.y + Ng.y*epsilon_f;
	}
	else {
		uint iy = __float_as_uint(P.y);
		iy += ((iy ^ __float_as_uint(Ng.y)) >> 31)? -epsilon_i: epsilon_i;
		res.y = __uint_as_float(iy);
	}

	/* z component */
	if(fabsf(P.z) < epsilon_f) {
		res.z = P.z + Ng.z*epsilon_f;
	}
	else {
		uint iz = __float_as_uint(P.z);
		iz += ((iz ^ __float_as_uint(Ng.z)) >> 31)? -epsilon_i: epsilon_i;
		res.z = __uint_as_float(iz);
	}

	return res;
#else
	const float epsilon_f = 1e-4f;
	return P + epsilon_f*Ng;
#endif
}

__device_inline float3 bvh_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray)
{
	float3 P = ray->P;
	float3 D = ray->D;
	float t = isect->t;

#ifdef __INTERSECTION_REFINE__
	if(isect->object != ~0) {
#ifdef __MOTION__
		Transform tfm = sd->ob_itfm;
#else
		Transform tfm = object_fetch_transform(kg, isect->object, ray->time, OBJECT_INVERSE_TRANSFORM);
#endif

		P = transform_point(&tfm, P);
		D = transform_direction(&tfm, D*t);
		D = normalize_len(D, &t);
	}

	P = P + D*t;

	float4 v00 = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0);
	float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
	float invDz = 1.0f/(D.x*v00.x + D.y*v00.y + D.z*v00.z);
	float rt = Oz * invDz;

	P = P + D*rt;

	if(isect->object != ~0) {
#ifdef __MOTION__
		Transform tfm = sd->ob_tfm;
#else
		Transform tfm = object_fetch_transform(kg, isect->object, ray->time, OBJECT_TRANSFORM);
#endif

		P = transform_point(&tfm, P);
	}

	return P;
#else
	return P + D*t;
#endif
}

CCL_NAMESPACE_END