Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_camera.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6b03abe97080418497de20395e7aa5ff5b0f07ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

CCL_NAMESPACE_BEGIN

/* Perspective Camera */

ccl_device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
{
	float blades = kernel_data.cam.blades;

	if(blades == 0.0f) {
		/* sample disk */
		return concentric_sample_disk(u, v);
	}
	else {
		/* sample polygon */
		float rotation = kernel_data.cam.bladesrotation;
		return regular_polygon_sample(blades, rotation, u, v);
	}
}

ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
	/* create ray form raster position */
	Transform rastertocamera = kernel_data.cam.rastertocamera;
	float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));

	ray->P = make_float3(0.0f, 0.0f, 0.0f);
	ray->D = Pcamera;

	/* modify ray for depth of field */
	float aperturesize = kernel_data.cam.aperturesize;

	if(aperturesize > 0.0f) {
		/* sample point on aperture */
		float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;

		/* compute point on plane of focus */
		float ft = kernel_data.cam.focaldistance/ray->D.z;
		float3 Pfocus = ray->D*ft;

		/* update ray for effect of lens */
		ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
		ray->D = normalize(Pfocus - ray->P);
	}

	/* transform ray from camera to world */
	Transform cameratoworld = kernel_data.cam.cameratoworld;

#ifdef __CAMERA_MOTION__
	if(kernel_data.cam.have_motion)
		transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif

	ray->P = transform_point(&cameratoworld, ray->P);
	ray->D = transform_direction(&cameratoworld, ray->D);
	ray->D = normalize(ray->D);

#ifdef __RAY_DIFFERENTIALS__
	/* ray differential */
	float3 Ddiff = transform_direction(&cameratoworld, Pcamera);

	ray->dP = differential3_zero();

	ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
	ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
#endif

#ifdef __CAMERA_CLIPPING__
	/* clipping */
	ray->P += kernel_data.cam.nearclip*ray->D;
	ray->t = kernel_data.cam.cliplength;
#else
	ray->t = FLT_MAX;
#endif
}

/* Orthographic Camera */

ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
	/* create ray form raster position */
	Transform rastertocamera = kernel_data.cam.rastertocamera;
	float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));

	ray->D = make_float3(0.0f, 0.0f, 1.0f);

	/* modify ray for depth of field */
	float aperturesize = kernel_data.cam.aperturesize;

	if(aperturesize > 0.0f) {
		/* sample point on aperture */
		float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;

		/* compute point on plane of focus */
		float3 Pfocus = ray->D * kernel_data.cam.focaldistance;

		/* update ray for effect of lens */
		float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
		ray->P = Pcamera + lensuvw;
		ray->D = normalize(Pfocus - lensuvw);
	}
	else {
		ray->P = Pcamera;
	}
	/* transform ray from camera to world */
	Transform cameratoworld = kernel_data.cam.cameratoworld;

#ifdef __CAMERA_MOTION__
	if(kernel_data.cam.have_motion)
		transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif

	ray->P = transform_point(&cameratoworld, ray->P);
	ray->D = transform_direction(&cameratoworld, ray->D);
	ray->D = normalize(ray->D);

#ifdef __RAY_DIFFERENTIALS__
	/* ray differential */
	ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
	ray->dP.dy = float4_to_float3(kernel_data.cam.dy);

	ray->dD = differential3_zero();
#endif

#ifdef __CAMERA_CLIPPING__
	/* clipping */
	ray->t = kernel_data.cam.cliplength;
#else
	ray->t = FLT_MAX;
#endif
}

/* Panorama Camera */

ccl_device void camera_sample_panorama(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
	Transform rastertocamera = kernel_data.cam.rastertocamera;
	float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));

	/* create ray form raster position */
	ray->P = make_float3(0.0f, 0.0f, 0.0f);

#ifdef __CAMERA_CLIPPING__
	/* clipping */
	ray->t = kernel_data.cam.cliplength;
#else
	ray->t = FLT_MAX;
#endif

	ray->D = panorama_to_direction(kg, Pcamera.x, Pcamera.y);

	/* indicates ray should not receive any light, outside of the lens */
	if(is_zero(ray->D)) {	
		ray->t = 0.0f;
		return;
	}

	/* modify ray for depth of field */
	float aperturesize = kernel_data.cam.aperturesize;

	if(aperturesize > 0.0f) {
		/* sample point on aperture */
		float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;

		/* compute point on plane of focus */
		float3 D = normalize(ray->D);
		float3 Pfocus = D * kernel_data.cam.focaldistance;

		/* calculate orthonormal coordinates perpendicular to D */
		float3 U, V;
		make_orthonormals(D, &U, &V);

		/* update ray for effect of lens */
		ray->P = U * lensuv.x + V * lensuv.y;
		ray->D = normalize(Pfocus - ray->P);
	}

	/* transform ray from camera to world */
	Transform cameratoworld = kernel_data.cam.cameratoworld;

#ifdef __CAMERA_MOTION__
	if(kernel_data.cam.have_motion)
		transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif

	ray->P = transform_point(&cameratoworld, ray->P);
	ray->D = transform_direction(&cameratoworld, ray->D);
	ray->D = normalize(ray->D);

#ifdef __RAY_DIFFERENTIALS__
	/* ray differential */
	ray->dP = differential3_zero();

	Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
	ray->dD.dx = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;

	Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
	ray->dD.dy = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
#endif
}

/* Common */

ccl_device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
	float lens_u, float lens_v, float time, Ray *ray)
{
	/* pixel filter */
	int filter_table_offset = kernel_data.film.filter_table_offset;
	float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
	float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);

#ifdef __CAMERA_MOTION__
	/* motion blur */
	if(kernel_data.cam.shuttertime == -1.0f)
		ray->time = TIME_INVALID;
	else
		ray->time = time;
#endif

	/* sample */
	if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
		camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
	else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
		camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
	else
		camera_sample_panorama(kg, raster_x, raster_y, lens_u, lens_v, ray);
}

/* Utilities */

ccl_device_inline float3 camera_position(KernelGlobals *kg)
{
	Transform cameratoworld = kernel_data.cam.cameratoworld;
	return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}

ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
{
	Transform cameratoworld = kernel_data.cam.cameratoworld;
	float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);

	if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
		float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
		return fabsf(dot((P - camP), camD));
	}
	else
		return len(P - camP);
}

ccl_device_inline float3 camera_direction_from_point(KernelGlobals *kg, float3 P)
{
	Transform cameratoworld = kernel_data.cam.cameratoworld;

	if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
		float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
		return -camD;
	}
	else {
		float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
		return normalize(camP - P);
	}
}

ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
{
	if(kernel_data.cam.type != CAMERA_PANORAMA) {
		/* perspective / ortho */
		if(sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
			P += camera_position(kg);

		Transform tfm = kernel_data.cam.worldtondc;
		return transform_perspective(&tfm, P);
	}
	else {
		/* panorama */
		Transform tfm = kernel_data.cam.worldtocamera;

		if(sd->object != OBJECT_NONE)
			P = normalize(transform_point(&tfm, P));
		else
			P = normalize(transform_direction(&tfm, P));

		float2 uv = direction_to_panorama(kg, P);

		return make_float3(uv.x, uv.y, 0.0f);
	}
}

CCL_NAMESPACE_END