Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_compat_cpu.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 37cba03ff9751743ed8d30875f51e11dc7cdaf73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

#ifndef __KERNEL_COMPAT_CPU_H__
#define __KERNEL_COMPAT_CPU_H__

#define __KERNEL_CPU__

#include "util_debug.h"
#include "util_math.h"
#include "util_simd.h"
#include "util_half.h"
#include "util_types.h"

/* On 64bit linux single precision exponent is really slow comparing to the
 * double precision version, even with float<->double conversion involved.
 */
#if !defined(__KERNEL_GPU__) && defined(__linux__) && defined(__x86_64__)
#  define expf(x) ((float)exp((double)(x)))
#endif

CCL_NAMESPACE_BEGIN

/* Assertions inside the kernel only work for the CPU device, so we wrap it in
 * a macro which is empty for other devices */

#define kernel_assert(cond) assert(cond)

/* Texture types to be compatible with CUDA textures. These are really just
 * simple arrays and after inlining fetch hopefully revert to being a simple
 * pointer lookup. */

template<typename T> struct texture  {
	ccl_always_inline T fetch(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return data[index];
	}

#if 0
	ccl_always_inline ssef fetch_ssef(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return ((ssef*)data)[index];
	}

	ccl_always_inline ssei fetch_ssei(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return ((ssei*)data)[index];
	}
#endif

	T *data;
	int width;
};

template<typename T> struct texture_image  {
	ccl_always_inline float4 read(float4 r)
	{
		return r;
	}

	ccl_always_inline float4 read(uchar4 r)
	{
		float f = 1.0f/255.0f;
		return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
	}

	ccl_always_inline int wrap_periodic(int x, int width)
	{
		x %= width;
		if(x < 0)
			x += width;
		return x;
	}

	ccl_always_inline int wrap_clamp(int x, int width)
	{
		return clamp(x, 0, width-1);
	}

	ccl_always_inline float frac(float x, int *ix)
	{
		int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
		*ix = i;
		return x - (float)i;
	}

	ccl_always_inline float4 interp(float x, float y, bool periodic = true)
	{
		if(UNLIKELY(!data))
			return make_float4(0.0f, 0.0f, 0.0f, 0.0f);

		int ix, iy, nix, niy;

		if(interpolation == INTERPOLATION_CLOSEST) {
			frac(x*(float)width, &ix);
			frac(y*(float)height, &iy);
			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);

			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
			}
			return read(data[ix + iy*width]);
		}
		else {
			float tx = frac(x*(float)width - 0.5f, &ix);
			float ty = frac(y*(float)height - 0.5f, &iy);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
			}

			float4 r = (1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width]);
			r += (1.0f - ty)*tx*read(data[nix + iy*width]);
			r += ty*(1.0f - tx)*read(data[ix + niy*width]);
			r += ty*tx*read(data[nix + niy*width]);

			return r;
		}
	}

	ccl_always_inline float4 interp_3d(float x, float y, float z, bool periodic = false)
	{
		return interp_3d_ex(x, y, z, interpolation, periodic);
	}

	ccl_always_inline float4 interp_3d_ex(float x, float y, float z,
	                                      int interpolation = INTERPOLATION_LINEAR,
	                                      bool periodic = false)
	{
		if(UNLIKELY(!data))
			return make_float4(0.0f, 0.0f, 0.0f, 0.0f);

		int ix, iy, iz, nix, niy, niz;

		if(interpolation == INTERPOLATION_CLOSEST) {
			frac(x*(float)width, &ix);
			frac(y*(float)height, &iy);
			frac(z*(float)depth, &iz);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);
			}

			return read(data[ix + iy*width + iz*width*height]);
		}
		else if(interpolation == INTERPOLATION_LINEAR) {
			float tx = frac(x*(float)width - 0.5f, &ix);
			float ty = frac(y*(float)height - 0.5f, &iy);
			float tz = frac(z*(float)depth - 0.5f, &iz);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
				niz = wrap_periodic(iz+1, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
				niz = wrap_clamp(iz+1, depth);
			}

			float4 r;

			r  = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + iz*width*height]);
			r += (1.0f - tz)*(1.0f - ty)*tx*read(data[nix + iy*width + iz*width*height]);
			r += (1.0f - tz)*ty*(1.0f - tx)*read(data[ix + niy*width + iz*width*height]);
			r += (1.0f - tz)*ty*tx*read(data[nix + niy*width + iz*width*height]);

			r += tz*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + niz*width*height]);
			r += tz*(1.0f - ty)*tx*read(data[nix + iy*width + niz*width*height]);
			r += tz*ty*(1.0f - tx)*read(data[ix + niy*width + niz*width*height]);
			r += tz*ty*tx*read(data[nix + niy*width + niz*width*height]);

			return r;
		}
		else {
			/* Tricubic b-spline interpolation. */
			const float tx = frac(x*(float)width - 0.5f, &ix);
			const float ty = frac(y*(float)height - 0.5f, &iy);
			const float tz = frac(z*(float)depth - 0.5f, &iz);
			int pix, piy, piz, nnix, nniy, nniz;

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);

				pix = wrap_periodic(ix-1, width);
				piy = wrap_periodic(iy-1, height);
				piz = wrap_periodic(iz-1, depth);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
				niz = wrap_periodic(iz+1, depth);

				nnix = wrap_periodic(ix+2, width);
				nniy = wrap_periodic(iy+2, height);
				nniz = wrap_periodic(iz+2, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);

				pix = wrap_clamp(ix-1, width);
				piy = wrap_clamp(iy-1, height);
				piz = wrap_clamp(iz-1, depth);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
				niz = wrap_clamp(iz+1, depth);

				nnix = wrap_clamp(ix+2, width);
				nniy = wrap_clamp(iy+2, height);
				nniz = wrap_clamp(iz+2, depth);
			}

			const int xc[4] = {pix, ix, nix, nnix};
			const int yc[4] = {width * piy,
			                   width * iy,
			                   width * niy,
			                   width * nniy};
			const int zc[4] = {width * height * piz,
			                   width * height * iz,
			                   width * height * niz,
			                   width * height * nniz};
			float u[4], v[4], w[4];

			/* Some helper macro to keep code reasonable size,
			 * let compiler to inline all the matrix multiplications.
			 */
#define SET_SPLINE_WEIGHTS(u, t) \
			{ \
				u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
				u[1] =  ((      0.5f * t - 1.0f) * t       ) * t + (2.0f/3.0f); \
				u[2] =  ((     -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
				u[3] = (1.0f / 6.0f) * t * t * t; \
			} (void)0
#define DATA(x, y, z) (read(data[xc[x] + yc[y] + zc[z]]))
#define COL_TERM(col, row) \
			(v[col] * (u[0] * DATA(0, col, row) + \
			           u[1] * DATA(1, col, row) + \
			           u[2] * DATA(2, col, row) + \
			           u[3] * DATA(3, col, row)))
#define ROW_TERM(row) \
			(w[row] * (COL_TERM(0, row) + \
			           COL_TERM(1, row) + \
			           COL_TERM(2, row) + \
			           COL_TERM(3, row)))

			SET_SPLINE_WEIGHTS(u, tx);
			SET_SPLINE_WEIGHTS(v, ty);
			SET_SPLINE_WEIGHTS(w, tz);

			/* Actual interpolation. */
			return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);

#undef COL_TERM
#undef ROW_TERM
#undef DATA
#undef SET_SPLINE_WEIGHTS
		}
	}

	ccl_always_inline void dimensions_set(int width_, int height_, int depth_)
	{
		width = width_;
		height = height_;
		depth = depth_;
	}

	T *data;
	int interpolation;
	int width, height, depth;
};

typedef texture<float4> texture_float4;
typedef texture<float2> texture_float2;
typedef texture<float> texture_float;
typedef texture<uint> texture_uint;
typedef texture<int> texture_int;
typedef texture<uint4> texture_uint4;
typedef texture<uchar4> texture_uchar4;
typedef texture_image<float4> texture_image_float4;
typedef texture_image<uchar4> texture_image_uchar4;

/* Macros to handle different memory storage on different devices */

#define kernel_tex_fetch(tex, index) (kg->tex.fetch(index))
#define kernel_tex_fetch_ssef(tex, index) (kg->tex.fetch_ssef(index))
#define kernel_tex_fetch_ssei(tex, index) (kg->tex.fetch_ssei(index))
#define kernel_tex_lookup(tex, t, offset, size) (kg->tex.lookup(t, offset, size))
#define kernel_tex_image_interp(tex, x, y) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp(x, y) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp(x, y))
#define kernel_tex_image_interp_3d(tex, x, y, z) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d(x, y, z) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d(x, y, z))
#define kernel_tex_image_interp_3d_ex(tex, x, y, z, interpolation) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d_ex(x, y, z, interpolation) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d_ex(x, y, z, interpolation))

#define kernel_data (kg->__data)

CCL_NAMESPACE_END

#endif /* __KERNEL_COMPAT_CPU_H__ */