Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_compat_cpu.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 200667a0911b97ce74798436dcd51aba1216b912 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __KERNEL_COMPAT_CPU_H__
#define __KERNEL_COMPAT_CPU_H__

#define __KERNEL_CPU__

/* Release kernel has too much false-positive maybe-uninitialized warnings,
 * which makes it possible to miss actual warnings.
 */
#if defined(__GNUC__) && defined(NDEBUG)
#  pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif

#include "util_debug.h"
#include "util_math.h"
#include "util_simd.h"
#include "util_half.h"
#include "util_types.h"

/* On x86_64, versions of glibc < 2.16 have an issue where expf is
 * much slower than the double version.  This was fixed in glibc 2.16.
 */
#if !defined(__KERNEL_GPU__)  && defined(__x86_64__) && defined(__x86_64__) && \
     defined(__GNU_LIBRARY__) && defined(__GLIBC__ ) && defined(__GLIBC_MINOR__) && \
     (__GLIBC__ <= 2 && __GLIBC_MINOR__ < 16)
#  define expf(x) ((float)exp((double)(x)))
#endif

CCL_NAMESPACE_BEGIN

/* Assertions inside the kernel only work for the CPU device, so we wrap it in
 * a macro which is empty for other devices */

#define kernel_assert(cond) assert(cond)

/* Texture types to be compatible with CUDA textures. These are really just
 * simple arrays and after inlining fetch hopefully revert to being a simple
 * pointer lookup. */

template<typename T> struct texture  {
	ccl_always_inline T fetch(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return data[index];
	}

#ifdef __KERNEL_SSE2__
	ccl_always_inline ssef fetch_ssef(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return ((ssef*)data)[index];
	}

	ccl_always_inline ssei fetch_ssei(int index)
	{
		kernel_assert(index >= 0 && index < width);
		return ((ssei*)data)[index];
	}
#endif

	T *data;
	int width;
};

template<typename T> struct texture_image  {
#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
	{ \
		u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
		u[1] =  ((      0.5f * t - 1.0f) * t       ) * t + (2.0f/3.0f); \
		u[2] =  ((     -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
		u[3] = (1.0f / 6.0f) * t * t * t; \
	} (void)0

	ccl_always_inline float4 read(float4 r)
	{
		return r;
	}

	ccl_always_inline float4 read(uchar4 r)
	{
		float f = 1.0f/255.0f;
		return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
	}

	ccl_always_inline int wrap_periodic(int x, int width)
	{
		x %= width;
		if(x < 0)
			x += width;
		return x;
	}

	ccl_always_inline int wrap_clamp(int x, int width)
	{
		return clamp(x, 0, width-1);
	}

	ccl_always_inline float frac(float x, int *ix)
	{
		int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
		*ix = i;
		return x - (float)i;
	}

	ccl_always_inline float4 interp(float x, float y, bool periodic = true)
	{
		if(UNLIKELY(!data))
			return make_float4(0.0f, 0.0f, 0.0f, 0.0f);

		int ix, iy, nix, niy;

		if(interpolation == INTERPOLATION_CLOSEST) {
			frac(x*(float)width, &ix);
			frac(y*(float)height, &iy);
			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);

			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
			}
			return read(data[ix + iy*width]);
		}
		else if(interpolation == INTERPOLATION_LINEAR) {
			float tx = frac(x*(float)width - 0.5f, &ix);
			float ty = frac(y*(float)height - 0.5f, &iy);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
			}

			float4 r = (1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width]);
			r += (1.0f - ty)*tx*read(data[nix + iy*width]);
			r += ty*(1.0f - tx)*read(data[ix + niy*width]);
			r += ty*tx*read(data[nix + niy*width]);

			return r;
		}
		else {
			/* Tricubic b-spline interpolation. */
			const float tx = frac(x*(float)width - 0.5f, &ix);
			const float ty = frac(y*(float)height - 0.5f, &iy);
			int pix, piy, nnix, nniy;
			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);

				pix = wrap_periodic(ix-1, width);
				piy = wrap_periodic(iy-1, height);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);

				nnix = wrap_periodic(ix+2, width);
				nniy = wrap_periodic(iy+2, height);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);

				pix = wrap_clamp(ix-1, width);
				piy = wrap_clamp(iy-1, height);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);

				nnix = wrap_clamp(ix+2, width);
				nniy = wrap_clamp(iy+2, height);
			}
			const int xc[4] = {pix, ix, nix, nnix};
			const int yc[4] = {width * piy,
			                   width * iy,
			                   width * niy,
			                   width * nniy};
			float u[4], v[4];
			/* Some helper macro to keep code reasonable size,
			 * let compiler to inline all the matrix multiplications.
			 */
#define DATA(x, y) (read(data[xc[x] + yc[y]]))
#define TERM(col) \
			(v[col] * (u[0] * DATA(0, col) + \
			           u[1] * DATA(1, col) + \
			           u[2] * DATA(2, col) + \
			           u[3] * DATA(3, col)))

			SET_CUBIC_SPLINE_WEIGHTS(u, tx);
			SET_CUBIC_SPLINE_WEIGHTS(v, ty);

			/* Actual interpolation. */
			return TERM(0) + TERM(1) + TERM(2) + TERM(3);

#undef TERM
#undef DATA
		}
	}

	ccl_always_inline float4 interp_3d(float x, float y, float z, bool periodic = false)
	{
		return interp_3d_ex(x, y, z, interpolation, periodic);
	}

	ccl_always_inline float4 interp_3d_ex(float x, float y, float z,
	                                      int interpolation = INTERPOLATION_LINEAR,
	                                      bool periodic = false)
	{
		if(UNLIKELY(!data))
			return make_float4(0.0f, 0.0f, 0.0f, 0.0f);

		int ix, iy, iz, nix, niy, niz;

		if(interpolation == INTERPOLATION_CLOSEST) {
			frac(x*(float)width, &ix);
			frac(y*(float)height, &iy);
			frac(z*(float)depth, &iz);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);
			}

			return read(data[ix + iy*width + iz*width*height]);
		}
		else if(interpolation == INTERPOLATION_LINEAR) {
			float tx = frac(x*(float)width - 0.5f, &ix);
			float ty = frac(y*(float)height - 0.5f, &iy);
			float tz = frac(z*(float)depth - 0.5f, &iz);

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
				niz = wrap_periodic(iz+1, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
				niz = wrap_clamp(iz+1, depth);
			}

			float4 r;

			r  = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + iz*width*height]);
			r += (1.0f - tz)*(1.0f - ty)*tx*read(data[nix + iy*width + iz*width*height]);
			r += (1.0f - tz)*ty*(1.0f - tx)*read(data[ix + niy*width + iz*width*height]);
			r += (1.0f - tz)*ty*tx*read(data[nix + niy*width + iz*width*height]);

			r += tz*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + niz*width*height]);
			r += tz*(1.0f - ty)*tx*read(data[nix + iy*width + niz*width*height]);
			r += tz*ty*(1.0f - tx)*read(data[ix + niy*width + niz*width*height]);
			r += tz*ty*tx*read(data[nix + niy*width + niz*width*height]);

			return r;
		}
		else {
			/* Tricubic b-spline interpolation. */
			const float tx = frac(x*(float)width - 0.5f, &ix);
			const float ty = frac(y*(float)height - 0.5f, &iy);
			const float tz = frac(z*(float)depth - 0.5f, &iz);
			int pix, piy, piz, nnix, nniy, nniz;

			if(periodic) {
				ix = wrap_periodic(ix, width);
				iy = wrap_periodic(iy, height);
				iz = wrap_periodic(iz, depth);

				pix = wrap_periodic(ix-1, width);
				piy = wrap_periodic(iy-1, height);
				piz = wrap_periodic(iz-1, depth);

				nix = wrap_periodic(ix+1, width);
				niy = wrap_periodic(iy+1, height);
				niz = wrap_periodic(iz+1, depth);

				nnix = wrap_periodic(ix+2, width);
				nniy = wrap_periodic(iy+2, height);
				nniz = wrap_periodic(iz+2, depth);
			}
			else {
				ix = wrap_clamp(ix, width);
				iy = wrap_clamp(iy, height);
				iz = wrap_clamp(iz, depth);

				pix = wrap_clamp(ix-1, width);
				piy = wrap_clamp(iy-1, height);
				piz = wrap_clamp(iz-1, depth);

				nix = wrap_clamp(ix+1, width);
				niy = wrap_clamp(iy+1, height);
				niz = wrap_clamp(iz+1, depth);

				nnix = wrap_clamp(ix+2, width);
				nniy = wrap_clamp(iy+2, height);
				nniz = wrap_clamp(iz+2, depth);
			}

			const int xc[4] = {pix, ix, nix, nnix};
			const int yc[4] = {width * piy,
			                   width * iy,
			                   width * niy,
			                   width * nniy};
			const int zc[4] = {width * height * piz,
			                   width * height * iz,
			                   width * height * niz,
			                   width * height * nniz};
			float u[4], v[4], w[4];

			/* Some helper macro to keep code reasonable size,
			 * let compiler to inline all the matrix multiplications.
			 */
#define DATA(x, y, z) (read(data[xc[x] + yc[y] + zc[z]]))
#define COL_TERM(col, row) \
			(v[col] * (u[0] * DATA(0, col, row) + \
			           u[1] * DATA(1, col, row) + \
			           u[2] * DATA(2, col, row) + \
			           u[3] * DATA(3, col, row)))
#define ROW_TERM(row) \
			(w[row] * (COL_TERM(0, row) + \
			           COL_TERM(1, row) + \
			           COL_TERM(2, row) + \
			           COL_TERM(3, row)))

			SET_CUBIC_SPLINE_WEIGHTS(u, tx);
			SET_CUBIC_SPLINE_WEIGHTS(v, ty);
			SET_CUBIC_SPLINE_WEIGHTS(w, tz);

			/* Actual interpolation. */
			return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);

#undef COL_TERM
#undef ROW_TERM
#undef DATA
		}
	}

	ccl_always_inline void dimensions_set(int width_, int height_, int depth_)
	{
		width = width_;
		height = height_;
		depth = depth_;
	}

	T *data;
	int interpolation;
	int width, height, depth;
#undef SET_CUBIC_SPLINE_WEIGHTS
};

typedef texture<float4> texture_float4;
typedef texture<float2> texture_float2;
typedef texture<float> texture_float;
typedef texture<uint> texture_uint;
typedef texture<int> texture_int;
typedef texture<uint4> texture_uint4;
typedef texture<uchar4> texture_uchar4;
typedef texture_image<float4> texture_image_float4;
typedef texture_image<uchar4> texture_image_uchar4;

/* Macros to handle different memory storage on different devices */

#define kernel_tex_fetch(tex, index) (kg->tex.fetch(index))
#define kernel_tex_fetch_ssef(tex, index) (kg->tex.fetch_ssef(index))
#define kernel_tex_fetch_ssei(tex, index) (kg->tex.fetch_ssei(index))
#define kernel_tex_lookup(tex, t, offset, size) (kg->tex.lookup(t, offset, size))
#define kernel_tex_image_interp(tex, x, y) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp(x, y) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp(x, y))
#define kernel_tex_image_interp_3d(tex, x, y, z) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d(x, y, z) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d(x, y, z))
#define kernel_tex_image_interp_3d_ex(tex, x, y, z, interpolation) ((tex < MAX_FLOAT_IMAGES) ? kg->texture_float_images[tex].interp_3d_ex(x, y, z, interpolation) : kg->texture_byte_images[tex - MAX_FLOAT_IMAGES].interp_3d_ex(x, y, z, interpolation))

#define kernel_data (kg->__data)

#ifdef __KERNEL_SSE2__
typedef vector3<sseb> sse3b;
typedef vector3<ssef> sse3f;
typedef vector3<ssei> sse3i;

ccl_device_inline void print_sse3b(const char *label, sse3b& a)
{
	print_sseb(label, a.x);
	print_sseb(label, a.y);
	print_sseb(label, a.z);
}

ccl_device_inline void print_sse3f(const char *label, sse3f& a)
{
	print_ssef(label, a.x);
	print_ssef(label, a.y);
	print_ssef(label, a.z);
}

ccl_device_inline void print_sse3i(const char *label, sse3i& a)
{
	print_ssei(label, a.x);
	print_ssei(label, a.y);
	print_ssei(label, a.z);
}

#endif

CCL_NAMESPACE_END

#endif /* __KERNEL_COMPAT_CPU_H__ */