Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_lamp_emission.cl « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e7f8b227dd88bef4626f5a16124f1417001d737f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 * Copyright 2011-2015 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "kernel_split.h"

/*
 * Note on kernel_ocl_path_trace_lamp_emission
 * This is the 3rd kernel in the ray-tracing logic. This is the second of the
 * path-iteration kernels. This kernel takes care of the indirect lamp emission logic.
 * This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS. It processes rays of state RAY_ACTIVE
 * and RAY_HIT_BACKGROUND.
 * We will empty QUEUE_ACTIVE_AND_REGENERATED_RAYS queue in this kernel.
 * The input/output of the kernel is as follows,
 * Throughput_coop ------------------------------------|--- kernel_ocl_path_trace_lamp_emission --|--- PathRadiance_coop
 * Ray_coop -------------------------------------------|                                          |--- Queue_data(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
 * PathState_coop -------------------------------------|                                          |--- Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
 * kg (globals + data) --------------------------------|                                          |
 * Intersection_coop ----------------------------------|                                          |
 * ray_state ------------------------------------------|                                          |
 * Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -----|                                          |
 * Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ----|                                          |
 * queuesize ------------------------------------------|                                          |
 * use_queues_flag ------------------------------------|                                          |
 * sw -------------------------------------------------|                                          |
 * sh -------------------------------------------------|                                          |
 * parallel_samples -----------------------------------|                                          |
 *
 * note : shader_data is neither input nor output. Its just filled and consumed in the same, kernel_ocl_path_trace_lamp_emission, kernel.
 */
__kernel void kernel_ocl_path_trace_lamp_emission(
	ccl_global char *globals,
	ccl_constant KernelData *data,
	ccl_global char *shader_data,               /* Required for lamp emission */
	ccl_global float3 *throughput_coop,         /* Required for lamp emission */
	PathRadiance *PathRadiance_coop, /* Required for lamp emission */
	ccl_global Ray *Ray_coop,                   /* Required for lamp emission */
	ccl_global PathState *PathState_coop,       /* Required for lamp emission */
	Intersection *Intersection_coop, /* Required for lamp emission */
	ccl_global char *ray_state,                 /* Denotes the state of each ray */
	int sw, int sh,
	ccl_global int *Queue_data,                 /* Memory for queues */
	ccl_global int *Queue_index,                /* Tracks the number of elements in queues */
	int queuesize,                              /* Size (capacity) of queues */
	ccl_global char *use_queues_flag,           /* used to decide if this kernel should use queues to fetch ray index */
	int parallel_samples                        /* Number of samples to be processed in parallel */
	)
{
	int x = get_global_id(0);
	int y = get_global_id(1);

	/* We will empty this queue in this kernel */
	if(get_global_id(0) == 0 && get_global_id(1) == 0) {
		Queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
	}

	/* Fetch use_queues_flag */
	ccl_local char local_use_queues_flag;
	if(get_local_id(0) == 0 && get_local_id(1) == 0) {
		local_use_queues_flag = use_queues_flag[0];
	}
	barrier(CLK_LOCAL_MEM_FENCE);

	int ray_index;
	if(local_use_queues_flag) {
		int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
		ray_index = get_ray_index(thread_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, Queue_data, queuesize, 1);

		if(ray_index == QUEUE_EMPTY_SLOT) {
			return;
		}
	} else {
		if(x < (sw * parallel_samples) && y < sh){
			ray_index = x + y * (sw * parallel_samples);
		} else {
			return;
		}
	}

	if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) || IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
		KernelGlobals *kg = (KernelGlobals *)globals;
		ShaderData *sd = (ShaderData *)shader_data;
		PathRadiance *L = &PathRadiance_coop[ray_index];

		float3 throughput = throughput_coop[ray_index];
		Ray ray = Ray_coop[ray_index];
		PathState state = PathState_coop[ray_index];

#ifdef __LAMP_MIS__
		if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
			/* ray starting from previous non-transparent bounce */
			Ray light_ray;

			light_ray.P = ray.P - state.ray_t*ray.D;
			state.ray_t += Intersection_coop[ray_index].t;
			light_ray.D = ray.D;
			light_ray.t = state.ray_t;
			light_ray.time = ray.time;
			light_ray.dD = ray.dD;
			light_ray.dP = ray.dP;
			/* intersect with lamp */
			float3 emission;

			if(indirect_lamp_emission(kg, &state, &light_ray, &emission, sd)) {
				path_radiance_accum_emission(L, throughput, emission, state.bounce);
			}
		}
#endif
		/* __VOLUME__ feature is disabled */
#if 0
#ifdef __VOLUME__
		/* volume attenuation, emission, scatter */
		if(state.volume_stack[0].shader != SHADER_NONE) {
			Ray volume_ray = ray;
			volume_ray.t = (hit)? isect.t: FLT_MAX;

			bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);

#ifdef __VOLUME_DECOUPLED__
			int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
			bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);

			if(decoupled) {
				/* cache steps along volume for repeated sampling */
				VolumeSegment volume_segment;
				ShaderData volume_sd;

				shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
				kernel_volume_decoupled_record(kg, &state,
					&volume_ray, &volume_sd, &volume_segment, heterogeneous);

				volume_segment.sampling_method = sampling_method;

				/* emission */
				if(volume_segment.closure_flag & SD_EMISSION)
					path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);

				/* scattering */
				VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;

				if(volume_segment.closure_flag & SD_SCATTER) {
					bool all = false;

					/* direct light sampling */
					kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
						throughput, &state, &L, 1.0f, all, &volume_ray, &volume_segment);

					/* indirect sample. if we use distance sampling and take just
					 * one sample for direct and indirect light, we could share
					 * this computation, but makes code a bit complex */
					float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
					float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);

					result = kernel_volume_decoupled_scatter(kg,
						&state, &volume_ray, &volume_sd, &throughput,
						rphase, rscatter, &volume_segment, NULL, true);
				}

				if(result != VOLUME_PATH_SCATTERED)
					throughput *= volume_segment.accum_transmittance;

				/* free cached steps */
				kernel_volume_decoupled_free(kg, &volume_segment);

				if(result == VOLUME_PATH_SCATTERED) {
					if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
						continue;
					else
						break;
				}
			}
			else
#endif
			{
				/* integrate along volume segment with distance sampling */
				ShaderData volume_sd;
				VolumeIntegrateResult result = kernel_volume_integrate(
					kg, &state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous);

#ifdef __VOLUME_SCATTER__
				if(result == VOLUME_PATH_SCATTERED) {
					/* direct lighting */
					kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L);

					/* indirect light bounce */
					if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
						continue;
					else
						break;
				}
#endif
			}
		}
#endif
#endif
	}
}