Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_light.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 262d7df136432fb06c37bd03c9508efa608fce46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Light Sample result */

typedef struct LightSample {
	float3 P;			/* position on light, or direction for distant light */
	float3 Ng;			/* normal on light */
	float3 D;			/* direction from shading point to light */
	float t;			/* distance to light (FLT_MAX for distant light) */
	float u, v;			/* parametric coordinate on primitive */
	float pdf;			/* light sampling probability density function */
	float eval_fac;		/* intensity multiplier */
	int object;			/* object id for triangle/curve lights */
	int prim;			/* primitive id for triangle/curve lights */
	int shader;			/* shader id */
	int lamp;			/* lamp id */
	LightType type;		/* type of light */
} LightSample;

/* Area light sampling */

/* Uses the following paper:
 *
 * Carlos Urena et al.
 * An Area-Preserving Parametrization for Spherical Rectangles.
 *
 * https://www.solidangle.com/research/egsr2013_spherical_rectangle.pdf
 *
 * Note: light_p is modified when sample_coord is true.
 */
ccl_device_inline float rect_light_sample(float3 P,
                                          float3 *light_p,
                                          float3 axisu, float3 axisv,
                                          float randu, float randv,
                                          bool sample_coord)
{
	/* In our name system we're using P for the center,
	 * which is o in the paper.
	 */

	float3 corner = *light_p - axisu * 0.5f - axisv * 0.5f;
	float axisu_len, axisv_len;
	/* Compute local reference system R. */
	float3 x = normalize_len(axisu, &axisu_len);
	float3 y = normalize_len(axisv, &axisv_len);
	float3 z = cross(x, y);
	/* Compute rectangle coords in local reference system. */
	float3 dir = corner - P;
	float z0 = dot(dir, z);
	/* Flip 'z' to make it point against Q. */
	if(z0 > 0.0f) {
		z *= -1.0f;
		z0 *= -1.0f;
	}
	float x0 = dot(dir, x);
	float y0 = dot(dir, y);
	float x1 = x0 + axisu_len;
	float y1 = y0 + axisv_len;
	/* Compute internal angles (gamma_i). */
	float4 diff = make_float4(x0, y1, x1, y0) - make_float4(x1, y0, x0, y1);
	float4 nz = make_float4(y0, x1, y1, x0) * diff;
	nz = nz / sqrt(z0 * z0 * diff * diff + nz * nz);
	float g0 = safe_acosf(-nz.x * nz.y);
	float g1 = safe_acosf(-nz.y * nz.z);
	float g2 = safe_acosf(-nz.z * nz.w);
	float g3 = safe_acosf(-nz.w * nz.x);
	/* Compute predefined constants. */
	float b0 = nz.x;
	float b1 = nz.z;
	float b0sq = b0 * b0;
	float k = M_2PI_F - g2 - g3;
	/* Compute solid angle from internal angles. */
	float S = g0 + g1 - k;

	if(sample_coord) {
		/* Compute cu. */
		float au = randu * S + k;
		float fu = (cosf(au) * b0 - b1) / sinf(au);
		float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f);
		cu = clamp(cu, -1.0f, 1.0f);
		/* Compute xu. */
		float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f);
		xu = clamp(xu, x0, x1);
		/* Compute yv. */
		float z0sq = z0 * z0;
		float y0sq = y0 * y0;
		float y1sq = y1 * y1;
		float d = sqrtf(xu * xu + z0sq);
		float h0 = y0 / sqrtf(d * d + y0sq);
		float h1 = y1 / sqrtf(d * d + y1sq);
		float hv = h0 + randv * (h1 - h0), hv2 = hv * hv;
		float yv = (hv2 < 1.0f - 1e-6f) ? (hv * d) / sqrtf(1.0f - hv2) : y1;

		/* Transform (xu, yv, z0) to world coords. */
		*light_p = P + xu * x + yv * y + z0 * z;
	}

	/* return pdf */
	if(S != 0.0f)
		return 1.0f / S;
	else
		return 0.0f;
}

ccl_device_inline float3 ellipse_sample(float3 ru, float3 rv, float randu, float randv)
{
	to_unit_disk(&randu, &randv);
	return ru*randu + rv*randv;
}

ccl_device float3 disk_light_sample(float3 v, float randu, float randv)
{
	float3 ru, rv;

	make_orthonormals(v, &ru, &rv);

	return ellipse_sample(ru, rv, randu, randv);
}

ccl_device float3 distant_light_sample(float3 D, float radius, float randu, float randv)
{
	return normalize(D + disk_light_sample(D, randu, randv)*radius);
}

ccl_device float3 sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv)
{
	return disk_light_sample(normalize(P - center), randu, randv)*radius;
}

ccl_device float spot_light_attenuation(float3 dir, float spot_angle, float spot_smooth, LightSample *ls)
{
	float3 I = ls->Ng;

	float attenuation = dot(dir, I);

	if(attenuation <= spot_angle) {
		attenuation = 0.0f;
	}
	else {
		float t = attenuation - spot_angle;

		if(t < spot_smooth && spot_smooth != 0.0f)
			attenuation *= smoothstepf(t/spot_smooth);
	}

	return attenuation;
}

ccl_device float lamp_light_pdf(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
{
	float cos_pi = dot(Ng, I);

	if(cos_pi <= 0.0f)
		return 0.0f;

	return t*t/cos_pi;
}

/* Background Light */

#ifdef __BACKGROUND_MIS__

/* TODO(sergey): In theory it should be all fine to use noinline for all
 * devices, but we're so close to the release so better not screw things
 * up for CPU at least.
 */
#ifdef __KERNEL_GPU__
ccl_device_noinline
#else
ccl_device
#endif
float3 background_map_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
{
	/* for the following, the CDF values are actually a pair of floats, with the
	 * function value as X and the actual CDF as Y.  The last entry's function
	 * value is the CDF total. */
	int res_x = kernel_data.integrator.pdf_background_res_x;
	int res_y = kernel_data.integrator.pdf_background_res_y;
	int cdf_width = res_x + 1;

	/* this is basically std::lower_bound as used by pbrt */
	int first = 0;
	int count = res_y;

	while(count > 0) {
		int step = count >> 1;
		int middle = first + step;

		if(kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
			first = middle + 1;
			count -= step + 1;
		}
		else
			count = step;
	}

	int index_v = max(0, first - 1);
	kernel_assert(index_v >= 0 && index_v < res_y);

	float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
	float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
	float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);

	/* importance-sampled V direction */
	float dv = inverse_lerp(cdf_v.y, cdf_next_v.y, randv);
	float v = (index_v + dv) / res_y;

	/* this is basically std::lower_bound as used by pbrt */
	first = 0;
	count = res_x;
	while(count > 0) {
		int step = count >> 1;
		int middle = first + step;

		if(kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + middle).y < randu) {
			first = middle + 1;
			count -= step + 1;
		}
		else
			count = step;
	}

	int index_u = max(0, first - 1);
	kernel_assert(index_u >= 0 && index_u < res_x);

	float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + index_u);
	float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + index_u + 1);
	float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + res_x);

	/* importance-sampled U direction */
	float du = inverse_lerp(cdf_u.y, cdf_next_u.y, randu);
	float u = (index_u + du) / res_x;

	/* compute pdf */
	float denom = cdf_last_u.x * cdf_last_v.x;
	float sin_theta = sinf(M_PI_F * v);

	if(sin_theta == 0.0f || denom == 0.0f)
		*pdf = 0.0f;
	else
		*pdf = (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);

	/* compute direction */
	return equirectangular_to_direction(u, v);
}

/* TODO(sergey): Same as above, after the release we should consider using
 * 'noinline' for all devices.
 */
#ifdef __KERNEL_GPU__
ccl_device_noinline
#else
ccl_device
#endif
float background_map_pdf(KernelGlobals *kg, float3 direction)
{
	float2 uv = direction_to_equirectangular(direction);
	int res_x = kernel_data.integrator.pdf_background_res_x;
	int res_y = kernel_data.integrator.pdf_background_res_y;
	int cdf_width = res_x + 1;

	float sin_theta = sinf(uv.y * M_PI_F);

	if(sin_theta == 0.0f)
		return 0.0f;

	int index_u = clamp(float_to_int(uv.x * res_x), 0, res_x - 1);
	int index_v = clamp(float_to_int(uv.y * res_y), 0, res_y - 1);

	/* pdfs in V direction */
	float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + res_x);
	float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res_y);

	float denom = cdf_last_u.x * cdf_last_v.x;

	if(denom == 0.0f)
		return 0.0f;

	/* pdfs in U direction */
	float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_width + index_u);
	float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);

	return (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);
}

ccl_device_inline bool background_portal_data_fetch_and_check_side(KernelGlobals *kg,
                                                                   float3 P,
                                                                   int index,
                                                                   float3 *lightpos,
                                                                   float3 *dir)
{
	int portal = kernel_data.integrator.portal_offset + index;
	const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);

	*lightpos = make_float3(klight->co[0], klight->co[1], klight->co[2]);
	*dir = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]);

	/* Check whether portal is on the right side. */
	if(dot(*dir, P - *lightpos) > 1e-4f)
		return true;

	return false;
}

ccl_device_inline float background_portal_pdf(KernelGlobals *kg,
                                              float3 P,
                                              float3 direction,
                                              int ignore_portal,
                                              bool *is_possible)
{
	float portal_pdf = 0.0f;

	int num_possible = 0;
	for(int p = 0; p < kernel_data.integrator.num_portals; p++) {
		if(p == ignore_portal)
			continue;

		float3 lightpos, dir;
		if(!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
			continue;

		/* There's a portal that could be sampled from this position. */
		if(is_possible) {
			*is_possible = true;
		}
		num_possible++;

		int portal = kernel_data.integrator.portal_offset + p;
		const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
		float3 axisu = make_float3(klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
		float3 axisv = make_float3(klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
		bool is_round = (klight->area.invarea < 0.0f);

		if(!ray_quad_intersect(P, direction, 1e-4f, FLT_MAX, lightpos, axisu, axisv, dir, NULL, NULL, NULL, NULL, is_round))
			continue;

		if(is_round) {
			float t;
			float3 D = normalize_len(lightpos - P, &t);
			portal_pdf += fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
		}
		else {
			portal_pdf += rect_light_sample(P, &lightpos, axisu, axisv, 0.0f, 0.0f, false);
		}
	}

	if(ignore_portal >= 0) {
		/* We have skipped a portal that could be sampled as well. */
		num_possible++;
	}

	return (num_possible > 0)? portal_pdf / num_possible: 0.0f;
}

ccl_device int background_num_possible_portals(KernelGlobals *kg, float3 P)
{
	int num_possible_portals = 0;
	for(int p = 0; p < kernel_data.integrator.num_portals; p++) {
		float3 lightpos, dir;
		if(background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
			num_possible_portals++;
	}
	return num_possible_portals;
}

ccl_device float3 background_portal_sample(KernelGlobals *kg,
                                           float3 P,
                                           float randu,
                                           float randv,
                                           int num_possible,
                                           int *sampled_portal,
                                           float *pdf)
{
	/* Pick a portal, then re-normalize randv. */
	randv *= num_possible;
	int portal = (int)randv;
	randv -= portal;

	/* TODO(sergey): Some smarter way of finding portal to sample
	 * is welcome.
	 */
	for(int p = 0; p < kernel_data.integrator.num_portals; p++) {
		/* Search for the sampled portal. */
		float3 lightpos, dir;
		if(!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
			continue;

		if(portal == 0) {
			/* p is the portal to be sampled. */
			int portal = kernel_data.integrator.portal_offset + p;
			const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, portal);
			float3 axisu = make_float3(klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
			float3 axisv = make_float3(klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
			bool is_round = (klight->area.invarea < 0.0f);

			float3 D;
			if(is_round) {
				lightpos += ellipse_sample(axisu*0.5f, axisv*0.5f, randu, randv);
				float t;
				D = normalize_len(lightpos - P, &t);
				*pdf = fabsf(klight->area.invarea) * lamp_light_pdf(kg, dir, -D, t);
			}
			else {
				*pdf = rect_light_sample(P, &lightpos,
				                         axisu, axisv,
				                         randu, randv,
				                         true);
				D = normalize(lightpos - P);
			}

			*pdf /= num_possible;
			*sampled_portal = p;
			return D;
		}

		portal--;
	}

	return make_float3(0.0f, 0.0f, 0.0f);
}

ccl_device_inline float3 background_light_sample(KernelGlobals *kg,
                                                 float3 P,
                                                 float randu, float randv,
                                                 float *pdf)
{
	/* Probability of sampling portals instead of the map. */
	float portal_sampling_pdf = kernel_data.integrator.portal_pdf;

	/* Check if there are portals in the scene which we can sample. */
	if(portal_sampling_pdf > 0.0f) {
		int num_portals = background_num_possible_portals(kg, P);
		if(num_portals > 0) {
			if(portal_sampling_pdf == 1.0f || randu < portal_sampling_pdf) {
				if(portal_sampling_pdf < 1.0f) {
					randu /= portal_sampling_pdf;
				}
				int portal;
				float3 D = background_portal_sample(kg, P, randu, randv, num_portals, &portal, pdf);
				if(num_portals > 1) {
					/* Ignore the chosen portal, its pdf is already included. */
					*pdf += background_portal_pdf(kg, P, D, portal, NULL);
				}
				/* We could also have sampled the map, so combine with MIS. */
				if(portal_sampling_pdf < 1.0f) {
					float cdf_pdf = background_map_pdf(kg, D);
					*pdf = (portal_sampling_pdf * (*pdf)
					     + (1.0f - portal_sampling_pdf) * cdf_pdf);
				}
				return D;
			}
			else {
				/* Sample map, but with nonzero portal_sampling_pdf for MIS. */
				randu = (randu - portal_sampling_pdf) / (1.0f - portal_sampling_pdf);
			}
		}
		else {
			/* We can't sample a portal.
			 * Check if we can sample the map instead.
			 */
			if(portal_sampling_pdf == 1.0f) {
				/* Use uniform as a fallback if we can't sample the map. */
				*pdf = 1.0f / M_4PI_F;
				return sample_uniform_sphere(randu, randv);
			}
			else {
				portal_sampling_pdf = 0.0f;
			}
		}
	}

	float3 D = background_map_sample(kg, randu, randv, pdf);
	/* Use MIS if portals could be sampled as well. */
	if(portal_sampling_pdf > 0.0f) {
		float portal_pdf = background_portal_pdf(kg, P, D, -1, NULL);
		*pdf = (portal_sampling_pdf * portal_pdf
		     + (1.0f - portal_sampling_pdf) * (*pdf));
	}
	return D;
}

ccl_device float background_light_pdf(KernelGlobals *kg, float3 P, float3 direction)
{
	/* Probability of sampling portals instead of the map. */
	float portal_sampling_pdf = kernel_data.integrator.portal_pdf;

	float portal_pdf = 0.0f, map_pdf = 0.0f;
	if(portal_sampling_pdf > 0.0f) {
		/* Evaluate PDF of sampling this direction by portal sampling. */
		bool is_possible = false;
		portal_pdf = background_portal_pdf(kg, P, direction, -1, &is_possible) * portal_sampling_pdf;
		if(!is_possible) {
			/* Portal sampling is not possible here because all portals point to the wrong side.
			 * If map sampling is possible, it would be used instead, otherwise fallback sampling is used. */
			if(portal_sampling_pdf == 1.0f) {
				return kernel_data.integrator.pdf_lights / M_4PI_F;
			}
			else {
				/* Force map sampling. */
				portal_sampling_pdf = 0.0f;
			}
		}
	}
	if(portal_sampling_pdf < 1.0f) {
		/* Evaluate PDF of sampling this direction by map sampling. */
		map_pdf = background_map_pdf(kg, direction) * (1.0f - portal_sampling_pdf);
	}
	return (portal_pdf + map_pdf) * kernel_data.integrator.pdf_lights;
}
#endif

/* Regular Light */

ccl_device_inline bool lamp_light_sample(KernelGlobals *kg,
                                         int lamp,
                                         float randu, float randv,
                                         float3 P,
                                         LightSample *ls)
{
	const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, lamp);
	LightType type = (LightType)klight->type;
	ls->type = type;
	ls->shader = klight->shader_id;
	ls->object = PRIM_NONE;
	ls->prim = PRIM_NONE;
	ls->lamp = lamp;
	ls->u = randu;
	ls->v = randv;

	if(type == LIGHT_DISTANT) {
		/* distant light */
		float3 lightD = make_float3(klight->co[0], klight->co[1], klight->co[2]);
		float3 D = lightD;
		float radius = klight->distant.radius;
		float invarea = klight->distant.invarea;

		if(radius > 0.0f)
			D = distant_light_sample(D, radius, randu, randv);

		ls->P = D;
		ls->Ng = D;
		ls->D = -D;
		ls->t = FLT_MAX;

		float costheta = dot(lightD, D);
		ls->pdf = invarea/(costheta*costheta*costheta);
		ls->eval_fac = ls->pdf;
	}
#ifdef __BACKGROUND_MIS__
	else if(type == LIGHT_BACKGROUND) {
		/* infinite area light (e.g. light dome or env light) */
		float3 D = -background_light_sample(kg, P, randu, randv, &ls->pdf);

		ls->P = D;
		ls->Ng = D;
		ls->D = -D;
		ls->t = FLT_MAX;
		ls->eval_fac = 1.0f;
	}
#endif
	else {
		ls->P = make_float3(klight->co[0], klight->co[1], klight->co[2]);

		if(type == LIGHT_POINT || type == LIGHT_SPOT) {
			float radius = klight->spot.radius;

			if(radius > 0.0f)
				/* sphere light */
				ls->P += sphere_light_sample(P, ls->P, radius, randu, randv);

			ls->D = normalize_len(ls->P - P, &ls->t);
			ls->Ng = -ls->D;

			float invarea = klight->spot.invarea;
			ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
			ls->pdf = invarea;

			if(type == LIGHT_SPOT) {
				/* spot light attenuation */
				float3 dir = make_float3(klight->spot.dir[0],
                                         klight->spot.dir[1],
				                         klight->spot.dir[2]);
				ls->eval_fac *= spot_light_attenuation(dir,
				                                       klight->spot.spot_angle,
				                                       klight->spot.spot_smooth,
				                                       ls);
				if(ls->eval_fac == 0.0f) {
					return false;
				}
			}
			float2 uv = map_to_sphere(ls->Ng);
			ls->u = uv.x;
			ls->v = uv.y;

			ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
		}
		else {
			/* area light */
			float3 axisu = make_float3(klight->area.axisu[0],
			                           klight->area.axisu[1],
			                           klight->area.axisu[2]);
			float3 axisv = make_float3(klight->area.axisv[0],
			                           klight->area.axisv[1],
			                           klight->area.axisv[2]);
			float3 D = make_float3(klight->area.dir[0],
			                       klight->area.dir[1],
			                       klight->area.dir[2]);
			float invarea = fabsf(klight->area.invarea);
			bool is_round = (klight->area.invarea < 0.0f);

			if(dot(ls->P - P, D) > 0.0f) {
				return false;
			}

			float3 inplane;

			if(is_round) {
				inplane = ellipse_sample(axisu*0.5f, axisv*0.5f, randu, randv);
				ls->P += inplane;
				ls->pdf = invarea;
			}
			else {
				inplane = ls->P;
				ls->pdf = rect_light_sample(P, &ls->P,
				                            axisu, axisv,
				                            randu, randv,
				                            true);
				inplane = ls->P - inplane;
			}

			ls->u = dot(inplane, axisu) * (1.0f / dot(axisu, axisu)) + 0.5f;
			ls->v = dot(inplane, axisv) * (1.0f / dot(axisv, axisv)) + 0.5f;

			ls->Ng = D;
			ls->D = normalize_len(ls->P - P, &ls->t);

			ls->eval_fac = 0.25f*invarea;
			if(is_round) {
				ls->pdf *= lamp_light_pdf(kg, D, -ls->D, ls->t);
			}
		}
	}

	ls->pdf *= kernel_data.integrator.pdf_lights;

	return (ls->pdf > 0.0f);
}

ccl_device bool lamp_light_eval(KernelGlobals *kg, int lamp, float3 P, float3 D, float t, LightSample *ls)
{
	const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, lamp);
	LightType type = (LightType)klight->type;
	ls->type = type;
	ls->shader = klight->shader_id;
	ls->object = PRIM_NONE;
	ls->prim = PRIM_NONE;
	ls->lamp = lamp;
	/* todo: missing texture coordinates */
	ls->u = 0.0f;
	ls->v = 0.0f;

	if(!(ls->shader & SHADER_USE_MIS))
		return false;

	if(type == LIGHT_DISTANT) {
		/* distant light */
		float radius = klight->distant.radius;

		if(radius == 0.0f)
			return false;
		if(t != FLT_MAX)
			return false;

		/* a distant light is infinitely far away, but equivalent to a disk
		 * shaped light exactly 1 unit away from the current shading point.
		 *
		 *     radius              t^2/cos(theta)
		 *  <---------->           t = sqrt(1^2 + tan(theta)^2)
		 *       tan(th)           area = radius*radius*pi
		 *       <----->
		 *        \    |           (1 + tan(theta)^2)/cos(theta)
		 *         \   |           (1 + tan(acos(cos(theta)))^2)/cos(theta)
		 *       t  \th| 1         simplifies to
		 *           \-|           1/(cos(theta)^3)
		 *            \|           magic!
		 *             P
		 */

		float3 lightD = make_float3(klight->co[0], klight->co[1], klight->co[2]);
		float costheta = dot(-lightD, D);
		float cosangle = klight->distant.cosangle;

		if(costheta < cosangle)
			return false;

		ls->P = -D;
		ls->Ng = -D;
		ls->D = D;
		ls->t = FLT_MAX;

		/* compute pdf */
		float invarea = klight->distant.invarea;
		ls->pdf = invarea/(costheta*costheta*costheta);
		ls->eval_fac = ls->pdf;
	}
	else if(type == LIGHT_POINT || type == LIGHT_SPOT) {
		float3 lightP = make_float3(klight->co[0], klight->co[1], klight->co[2]);

		float radius = klight->spot.radius;

		/* sphere light */
		if(radius == 0.0f)
			return false;

		if(!ray_aligned_disk_intersect(P, D, t,
		                               lightP, radius, &ls->P, &ls->t))
		{
			return false;
		}

		ls->Ng = -D;
		ls->D = D;

		float invarea = klight->spot.invarea;
		ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
		ls->pdf = invarea;

		if(type == LIGHT_SPOT) {
			/* spot light attenuation */
			float3 dir = make_float3(klight->spot.dir[0],
			                         klight->spot.dir[1],
			                         klight->spot.dir[2]);
			ls->eval_fac *= spot_light_attenuation(dir,
			                                       klight->spot.spot_angle,
			                                       klight->spot.spot_smooth,
			                                       ls);

			if(ls->eval_fac == 0.0f)
				return false;
		}
		float2 uv = map_to_sphere(ls->Ng);
		ls->u = uv.x;
		ls->v = uv.y;

		/* compute pdf */
		if(ls->t != FLT_MAX)
			ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
	}
	else if(type == LIGHT_AREA) {
		/* area light */
		float invarea = fabsf(klight->area.invarea);
		bool is_round = (klight->area.invarea < 0.0f);
		if(invarea == 0.0f)
			return false;

		float3 axisu = make_float3(klight->area.axisu[0],
		                           klight->area.axisu[1],
		                           klight->area.axisu[2]);
		float3 axisv = make_float3(klight->area.axisv[0],
		                           klight->area.axisv[1],
		                           klight->area.axisv[2]);
		float3 Ng = make_float3(klight->area.dir[0],
		                        klight->area.dir[1],
		                        klight->area.dir[2]);

		/* one sided */
		if(dot(D, Ng) >= 0.0f)
			return false;

		float3 light_P = make_float3(klight->co[0], klight->co[1], klight->co[2]);

		if(!ray_quad_intersect(P, D, 0.0f, t, light_P,
		                       axisu, axisv, Ng,
		                       &ls->P, &ls->t,
		                       &ls->u, &ls->v,
		                       is_round))
		{
			return false;
		}

		ls->D = D;
		ls->Ng = Ng;
		if(is_round) {
			ls->pdf = invarea * lamp_light_pdf(kg, Ng, -D, ls->t);
		}
		else {
			ls->pdf = rect_light_sample(P, &light_P, axisu, axisv, 0, 0, false);
		}
		ls->eval_fac = 0.25f*invarea;
	}
	else {
		return false;
	}

	ls->pdf *= kernel_data.integrator.pdf_lights;

	return true;
}

/* Triangle Light */

/* returns true if the triangle is has motion blur or an instancing transform applied */
ccl_device_inline bool triangle_world_space_vertices(KernelGlobals *kg, int object, int prim, float time, float3 V[3])
{
	bool has_motion = false;
	const int object_flag = kernel_tex_fetch(__object_flag, object);

	if(object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) {
		motion_triangle_vertices(kg, object, prim, time, V);
		has_motion = true;
	}
	else {
		triangle_vertices(kg, prim, V);
	}

#ifdef __INSTANCING__
	if(!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
#  ifdef __OBJECT_MOTION__
		float object_time = (time >= 0.0f) ? time : 0.5f;
		Transform tfm = object_fetch_transform_motion_test(kg, object, object_time, NULL);
#  else
		Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#  endif
		V[0] = transform_point(&tfm, V[0]);
		V[1] = transform_point(&tfm, V[1]);
		V[2] = transform_point(&tfm, V[2]);
		has_motion = true;
	}
#endif
	return has_motion;
}

ccl_device_inline float triangle_light_pdf_area(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
{
	float pdf = kernel_data.integrator.pdf_triangles;
	float cos_pi = fabsf(dot(Ng, I));

	if(cos_pi == 0.0f)
		return 0.0f;

	return t*t*pdf/cos_pi;
}

ccl_device_forceinline float triangle_light_pdf(KernelGlobals *kg, ShaderData *sd, float t)
{
	/* A naive heuristic to decide between costly solid angle sampling
	 * and simple area sampling, comparing the distance to the triangle plane
	 * to the length of the edges of the triangle. */

	float3 V[3];
	bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V);

	const float3 e0 = V[1] - V[0];
	const float3 e1 = V[2] - V[0];
	const float3 e2 = V[2] - V[1];
	const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
	const float3 N = cross(e0, e1);
	const float distance_to_plane = fabsf(dot(N, sd->I * t))/dot(N, N);

	if(longest_edge_squared > distance_to_plane*distance_to_plane) {
		/* sd contains the point on the light source
		 * calculate Px, the point that we're shading */
		const float3 Px = sd->P + sd->I * t;
		const float3 v0_p = V[0] - Px;
		const float3 v1_p = V[1] - Px;
		const float3 v2_p = V[2] - Px;

		const float3 u01 = safe_normalize(cross(v0_p, v1_p));
		const float3 u02 = safe_normalize(cross(v0_p, v2_p));
		const float3 u12 = safe_normalize(cross(v1_p, v2_p));

		const float alpha = fast_acosf(dot(u02, u01));
		const float beta = fast_acosf(-dot(u01, u12));
		const float gamma = fast_acosf(dot(u02, u12));
		const float solid_angle =  alpha + beta + gamma - M_PI_F;

		/* pdf_triangles is calculated over triangle area, but we're not sampling over its area */
		if(UNLIKELY(solid_angle == 0.0f)) {
			return 0.0f;
		}
		else {
			float area = 1.0f;
			if(has_motion) {
				/* get the center frame vertices, this is what the PDF was calculated from */
				triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
				area = triangle_area(V[0], V[1], V[2]);
			}
			else {
				area = 0.5f * len(N);
			}
			const float pdf = area * kernel_data.integrator.pdf_triangles;
			return pdf / solid_angle;
		}
	}
	else {
		float pdf = triangle_light_pdf_area(kg, sd->Ng, sd->I, t);
		if(has_motion) {
			const float	area = 0.5f * len(N);
			if(UNLIKELY(area == 0.0f)) {
				return 0.0f;
			}
			/* scale the PDF.
			 * area = the area the sample was taken from
			 * area_pre = the are from which pdf_triangles was calculated from */
			triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
			const float area_pre = triangle_area(V[0], V[1], V[2]);
			pdf = pdf * area_pre / area;
		}
		return pdf;
	}
}

ccl_device_forceinline void triangle_light_sample(KernelGlobals *kg, int prim, int object,
	float randu, float randv, float time, LightSample *ls, const float3 P)
{
	/* A naive heuristic to decide between costly solid angle sampling
	 * and simple area sampling, comparing the distance to the triangle plane
	 * to the length of the edges of the triangle. */

	float3 V[3];
	bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V);

	const float3 e0 = V[1] - V[0];
	const float3 e1 = V[2] - V[0];
	const float3 e2 = V[2] - V[1];
	const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
	const float3 N0 = cross(e0, e1);
	float Nl = 0.0f;
	ls->Ng = safe_normalize_len(N0, &Nl);
	float area = 0.5f * Nl;

	/* flip normal if necessary */
	const int object_flag = kernel_tex_fetch(__object_flag, object);
	if(object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
		ls->Ng = -ls->Ng;
	}
	ls->eval_fac = 1.0f;
	ls->shader = kernel_tex_fetch(__tri_shader, prim);
	ls->object = object;
	ls->prim = prim;
	ls->lamp = LAMP_NONE;
	ls->shader |= SHADER_USE_MIS;
	ls->type = LIGHT_TRIANGLE;

	float distance_to_plane = fabsf(dot(N0, V[0] - P)/dot(N0, N0));

	if(longest_edge_squared > distance_to_plane*distance_to_plane) {
		/* see James Arvo, "Stratified Sampling of Spherical Triangles"
		 * http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */

		/* project the triangle to the unit sphere
		 * and calculate its edges and angles */
		const float3 v0_p = V[0] - P;
		const float3 v1_p = V[1] - P;
		const float3 v2_p = V[2] - P;

		const float3 u01 = safe_normalize(cross(v0_p, v1_p));
		const float3 u02 = safe_normalize(cross(v0_p, v2_p));
		const float3 u12 = safe_normalize(cross(v1_p, v2_p));

		const float3 A = safe_normalize(v0_p);
		const float3 B = safe_normalize(v1_p);
		const float3 C = safe_normalize(v2_p);

		const float cos_alpha = dot(u02, u01);
		const float cos_beta = -dot(u01, u12);
		const float cos_gamma = dot(u02, u12);

		/* calculate dihedral angles */
		const float alpha = fast_acosf(cos_alpha);
		const float beta = fast_acosf(cos_beta);
		const float gamma = fast_acosf(cos_gamma);
		/* the area of the unit spherical triangle = solid angle */
		const float solid_angle =  alpha + beta + gamma - M_PI_F;

		/* precompute a few things
		 * these could be re-used to take several samples
		 * as they are independent of randu/randv */
		const float cos_c = dot(A, B);
		const float sin_alpha = fast_sinf(alpha);
		const float product = sin_alpha * cos_c;

		/* Select a random sub-area of the spherical triangle
		 * and calculate the third vertex C_ of that new triangle */
		const float phi = randu * solid_angle - alpha;
		float s, t;
		fast_sincosf(phi, &s, &t);
		const float u = t - cos_alpha;
		const float v = s + product;

		const float3 U = safe_normalize(C - dot(C, A) * A);

		float q = 1.0f;
		const float det = ((v * s + u * t) * sin_alpha);
		if(det != 0.0f) {
			q = ((v * t - u * s) * cos_alpha - v) / det;
		}
		const float temp = max(1.0f - q*q, 0.0f);

		const float3 C_ = safe_normalize(q * A + sqrtf(temp) * U);

		/* Finally, select a random point along the edge of the new triangle
		 * That point on the spherical triangle is the sampled ray direction */
		const float z = 1.0f - randv * (1.0f - dot(C_, B));
		ls->D = z * B + safe_sqrtf(1.0f - z*z) * safe_normalize(C_ - dot(C_, B) * B);

		/* calculate intersection with the planar triangle */
		if(!ray_triangle_intersect(P, ls->D, FLT_MAX,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
		                           (ssef*)V,
#else
		                           V[0], V[1], V[2],
#endif
		                           &ls->u, &ls->v, &ls->t)) {
			ls->pdf = 0.0f;
			return;
		}

		ls->P = P + ls->D * ls->t;

		/* pdf_triangles is calculated over triangle area, but we're sampling over solid angle */
		if(UNLIKELY(solid_angle == 0.0f)) {
			ls->pdf = 0.0f;
			return;
		}
		else {
			if(has_motion) {
				/* get the center frame vertices, this is what the PDF was calculated from */
				triangle_world_space_vertices(kg, object, prim, -1.0f, V);
				area = triangle_area(V[0], V[1], V[2]);
			}
			const float pdf = area * kernel_data.integrator.pdf_triangles;
			ls->pdf = pdf / solid_angle;
		}
	}
	else {
		/* compute random point in triangle */
		randu = sqrtf(randu);

		const float u = 1.0f - randu;
		const float v = randv*randu;
		const float t = 1.0f - u - v;
		ls->P = u * V[0] + v * V[1] + t * V[2];
		/* compute incoming direction, distance and pdf */
		ls->D = normalize_len(ls->P - P, &ls->t);
		ls->pdf = triangle_light_pdf_area(kg, ls->Ng, -ls->D, ls->t);
		if(has_motion && area != 0.0f) {
			/* scale the PDF.
			 * area = the area the sample was taken from
			 * area_pre = the are from which pdf_triangles was calculated from */
			triangle_world_space_vertices(kg, object, prim, -1.0f, V);
			const float area_pre = triangle_area(V[0], V[1], V[2]);
			ls->pdf = ls->pdf * area_pre / area;
		}
		ls->u = u;
		ls->v = v;
	}
}

/* Light Distribution */

ccl_device int light_distribution_sample(KernelGlobals *kg, float *randu)
{
	/* This is basically std::upper_bound as used by pbrt, to find a point light or
	 * triangle to emit from, proportional to area. a good improvement would be to
	 * also sample proportional to power, though it's not so well defined with
	 * arbitrary shaders. */
	int first = 0;
	int len = kernel_data.integrator.num_distribution + 1;
	float r = *randu;

	while(len > 0) {
		int half_len = len >> 1;
		int middle = first + half_len;

		if(r < kernel_tex_fetch(__light_distribution, middle).totarea) {
			len = half_len;
		}
		else {
			first = middle + 1;
			len = len - half_len - 1;
		}
	}

	/* Clamping should not be needed but float rounding errors seem to
	 * make this fail on rare occasions. */
	int index = clamp(first-1, 0, kernel_data.integrator.num_distribution-1);

	/* Rescale to reuse random number. this helps the 2D samples within
	 * each area light be stratified as well. */
	float distr_min = kernel_tex_fetch(__light_distribution, index).totarea;
	float distr_max = kernel_tex_fetch(__light_distribution, index+1).totarea;
	*randu = (r - distr_min)/(distr_max - distr_min);

	return index;
}

/* Generic Light */

ccl_device bool light_select_reached_max_bounces(KernelGlobals *kg, int index, int bounce)
{
	return (bounce > kernel_tex_fetch(__lights, index).max_bounces);
}

ccl_device_noinline bool light_sample(KernelGlobals *kg,
                                      float randu,
                                      float randv,
                                      float time,
                                      float3 P,
                                      int bounce,
                                      LightSample *ls)
{
	/* sample index */
	int index = light_distribution_sample(kg, &randu);

	/* fetch light data */
	const ccl_global KernelLightDistribution *kdistribution = &kernel_tex_fetch(__light_distribution, index);
	int prim = kdistribution->prim;

	if(prim >= 0) {
		int object = kdistribution->mesh_light.object_id;
		int shader_flag = kdistribution->mesh_light.shader_flag;

		triangle_light_sample(kg, prim, object, randu, randv, time, ls, P);
		ls->shader |= shader_flag;
		return (ls->pdf > 0.0f);
	}
	else {
		int lamp = -prim-1;

		if(UNLIKELY(light_select_reached_max_bounces(kg, lamp, bounce))) {
			return false;
		}

		return lamp_light_sample(kg, lamp, randu, randv, P, ls);
	}
}

ccl_device int light_select_num_samples(KernelGlobals *kg, int index)
{
	return kernel_tex_fetch(__lights, index).samples;
}

CCL_NAMESPACE_END