Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_path.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 195291898c67f3896be6857244b2d8704c1bfe2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/*
 * Copyright 2011, Blender Foundation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "kernel_differential.h"
#include "kernel_montecarlo.h"
#include "kernel_projection.h"
#include "kernel_object.h"
#include "kernel_triangle.h"
#ifdef __QBVH__
#include "kernel_qbvh.h"
#else
#include "kernel_bvh.h"
#endif
#include "kernel_accumulate.h"
#include "kernel_camera.h"
#include "kernel_shader.h"
#include "kernel_light.h"
#include "kernel_emission.h"
#include "kernel_random.h"
#include "kernel_passes.h"

CCL_NAMESPACE_BEGIN

typedef struct PathState {
	uint flag;
	int bounce;

	int diffuse_bounce;
	int glossy_bounce;
	int transmission_bounce;
	int transparent_bounce;
} PathState;

__device_inline void path_state_init(PathState *state)
{
	state->flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
	state->bounce = 0;
	state->diffuse_bounce = 0;
	state->glossy_bounce = 0;
	state->transmission_bounce = 0;
	state->transparent_bounce = 0;
}

__device_inline void path_state_next(KernelGlobals *kg, PathState *state, int label)
{
	/* ray through transparent keeps same flags from previous ray and is
	 * not counted as a regular bounce, transparent has separate max */
	if(label & LABEL_TRANSPARENT) {
		state->flag |= PATH_RAY_TRANSPARENT;
		state->transparent_bounce++;

		if(!kernel_data.integrator.transparent_shadows)
			state->flag |= PATH_RAY_MIS_SKIP;

		return;
	}

	state->bounce++;

	/* reflection/transmission */
	if(label & LABEL_REFLECT) {
		state->flag |= PATH_RAY_REFLECT;
		state->flag &= ~(PATH_RAY_TRANSMIT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);

		if(label & LABEL_DIFFUSE)
			state->diffuse_bounce++;
		else
			state->glossy_bounce++;
	}
	else {
		kernel_assert(label & LABEL_TRANSMIT);

		state->flag |= PATH_RAY_TRANSMIT;
		state->flag &= ~(PATH_RAY_REFLECT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);

		state->transmission_bounce++;
	}

	/* diffuse/glossy/singular */
	if(label & LABEL_DIFFUSE) {
		state->flag |= PATH_RAY_DIFFUSE;
		state->flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
	}
	else if(label & LABEL_GLOSSY) {
		state->flag |= PATH_RAY_GLOSSY;
		state->flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
	}
	else {
		kernel_assert(label & LABEL_SINGULAR);

		state->flag |= PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
		state->flag &= ~PATH_RAY_DIFFUSE;
	}
}

__device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *state)
{
	uint flag = state->flag;

	/* for visibility, diffuse/glossy are for reflection only */
	if(flag & PATH_RAY_TRANSMIT)
		flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY);
	/* for camera visibility, use render layer flags */
	if(flag & PATH_RAY_CAMERA)
		flag |= kernel_data.integrator.layer_flag;

	return flag;
}

__device_inline float path_state_terminate_probability(KernelGlobals *kg, PathState *state, const float3 throughput)
{
	if(state->flag & PATH_RAY_TRANSPARENT) {
		/* transparent rays treated separately */
		if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
			return 0.0f;
		else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce)
			return 1.0f;
	}
	else {
		/* other rays */
		if((state->bounce >= kernel_data.integrator.max_bounce) ||
		   (state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) ||
		   (state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) ||
		   (state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce))
		{
			return 0.0f;
		}
		else if(state->bounce <= kernel_data.integrator.min_bounce) {
			return 1.0f;
		}
	}

	/* probalistic termination */
	return average(throughput);
}

__device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow)
{
	*shadow = make_float3(1.0f, 1.0f, 1.0f);

	if(ray->t == 0.0f)
		return false;
	
	Intersection isect;
	bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect);

#ifdef __TRANSPARENT_SHADOWS__
	if(result && kernel_data.integrator.transparent_shadows) {
		/* transparent shadows work in such a way to try to minimize overhead
		 * in cases where we don't need them. after a regular shadow ray is
		 * cast we check if the hit primitive was potentially transparent, and
		 * only in that case start marching. this gives on extra ray cast for
		 * the cases were we do want transparency.
		 *
		 * also note that for this to work correct, multi close sampling must
		 * be used, since we don't pass a random number to shader_eval_surface */
		if(shader_transparent_shadow(kg, &isect)) {
			float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
			float3 Pend = ray->P + ray->D*ray->t;
			int bounce = state->transparent_bounce;

			for(;;) {
				if(bounce >= kernel_data.integrator.transparent_max_bounce) {
					return true;
				}
				else if(bounce >= kernel_data.integrator.transparent_min_bounce) {
					/* todo: get random number somewhere for probabilistic terminate */
#if 0
					float probability = average(throughput);
					float terminate = 0.0f;

					if(terminate >= probability)
						return true;

					throughput /= probability;
#endif
				}

				if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect)) {
					*shadow *= throughput;
					return false;
				}

				if(!shader_transparent_shadow(kg, &isect))
					return true;

				ShaderData sd;
				shader_setup_from_ray(kg, &sd, &isect, ray);
				shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW);

				throughput *= shader_bsdf_transparency(kg, &sd);

				ray->P = ray_offset(sd.P, -sd.Ng);
				if(ray->t != FLT_MAX)
					ray->D = normalize_len(Pend - ray->P, &ray->t);

				shader_release(kg, &sd);

				bounce++;
			}
		}
	}
#endif

	return result;
}

__device float4 kernel_path_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer)
{
	/* initialize */
	PathRadiance L;
	float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
	float L_transparent = 0.0f;

	path_radiance_init(&L, kernel_data.film.use_light_pass);

	float min_ray_pdf = FLT_MAX;
	float ray_pdf = 0.0f;
	PathState state;
	int rng_offset = PRNG_BASE_NUM;

	path_state_init(&state);

	/* path iteration */
	for(;; rng_offset += PRNG_BOUNCE_NUM) {
		/* intersect scene */
		Intersection isect;
		uint visibility = path_state_ray_visibility(kg, &state);

		if(!scene_intersect(kg, &ray, visibility, &isect)) {
			/* eval background shader if nothing hit */
			if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
				L_transparent += average(throughput);

#ifdef __PASSES__
				if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif
					break;
			}

#ifdef __BACKGROUND__
			/* sample background shader */
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
			path_radiance_accum_background(&L, throughput, L_background, state.bounce);
#endif

			break;
		}

		/* setup shading */
		ShaderData sd;
		shader_setup_from_ray(kg, &sd, &isect, &ray);
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
		shader_eval_surface(kg, &sd, rbsdf, state.flag);

		kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);

		/* blurring of bsdf after bounces, for rays that have a small likelihood
		 * of following this particular path (diffuse, rough glossy) */
		if(kernel_data.integrator.filter_glossy != FLT_MAX) {
			float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf;

			if(blur_pdf < 1.0f) {
				float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
				shader_bsdf_blur(kg, &sd, blur_roughness);
			}
		}

		/* holdout */
#ifdef __HOLDOUT__
		if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
			if(kernel_data.background.transparent) {
				float3 holdout_weight;
				
				if(sd.flag & SD_HOLDOUT_MASK)
					holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
				else
					holdout_weight = shader_holdout_eval(kg, &sd);

				/* any throughput is ok, should all be identical here */
				L_transparent += average(holdout_weight*throughput);
			}

			if(sd.flag & SD_HOLDOUT_MASK) {
				shader_release(kg, &sd);
				break;
			}
		}
#endif

#ifdef __EMISSION__
		/* emission */
		if(sd.flag & SD_EMISSION) {
			float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf);
			path_radiance_accum_emission(&L, throughput, emission, state.bounce);
		}
#endif

		/* path termination. this is a strange place to put the termination, it's
		 * mainly due to the mixed in MIS that we use. gives too many unneeded
		 * shader evaluations, only need emission if we are going to terminate */
		float probability = path_state_terminate_probability(kg, &state, throughput);
		float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);

		if(terminate >= probability) {
			shader_release(kg, &sd);
			break;
		}

		throughput /= probability;

#ifdef __AO__
		/* ambient occlusion */
		if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
			/* todo: solve correlation */
			float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
			float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);

			float ao_factor = kernel_data.background.ao_factor;
			float3 ao_N;
			float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
			float3 ao_D;
			float ao_pdf;

			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);

			if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
				Ray light_ray;
				float3 ao_shadow;

				light_ray.P = ray_offset(sd.P, sd.Ng);
				light_ray.D = ao_D;
				light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
				light_ray.time = sd.time;
#endif

				if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
					path_radiance_accum_ao(&L, throughput, ao_bsdf, ao_shadow, state.bounce);
			}
		}
#endif

#ifdef __EMISSION__
		if(kernel_data.integrator.use_direct_light) {
			/* sample illumination from lights to find path contribution */
			if(sd.flag & SD_BSDF_HAS_EVAL) {
				float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
				float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F);
				float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U);
				float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V);

				Ray light_ray;
				BsdfEval L_light;
				bool is_lamp;

#ifdef __OBJECT_MOTION__
				light_ray.time = sd.time;
#endif

				if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
					/* trace shadow ray */
					float3 shadow;

					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
						/* accumulate */
						path_radiance_accum_light(&L, throughput, &L_light, shadow, state.bounce, is_lamp);
					}
				}
			}
		}
#endif

		/* no BSDF? we can stop here */
		if(!(sd.flag & SD_BSDF)) {
			shader_release(kg, &sd);
			break;
		}

		/* sample BSDF */
		float bsdf_pdf;
		BsdfEval bsdf_eval;
		float3 bsdf_omega_in;
		differential3 bsdf_domega_in;
		float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
		float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
		int label;

		label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
			&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);

		shader_release(kg, &sd);

		if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
			break;

		/* modify throughput */
		path_radiance_bsdf_bounce(&L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label);

		/* set labels */
		if(!(label & LABEL_TRANSPARENT)) {
			ray_pdf = bsdf_pdf;
			min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
		}

		/* update path state */
		path_state_next(kg, &state, label);

		/* setup ray */
		ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
		ray.D = bsdf_omega_in;

		if(state.bounce == 0)
			ray.t -= sd.ray_length; /* clipping works through transparent */
		else
			ray.t = FLT_MAX;

#ifdef __RAY_DIFFERENTIALS__
		ray.dP = sd.dP;
		ray.dD = bsdf_domega_in;
#endif
	}

	float3 L_sum = path_radiance_sum(kg, &L);

#ifdef __CLAMP_SAMPLE__
	path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp);
#endif

	kernel_write_light_passes(kg, buffer, &L, sample);

	return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}

#ifdef __NON_PROGRESSIVE__

__device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer,
	float3 throughput, float min_ray_pdf, float ray_pdf, PathState state, int rng_offset, PathRadiance *L)
{
	/* path iteration */
	for(;; rng_offset += PRNG_BOUNCE_NUM) {
		/* intersect scene */
		Intersection isect;
		uint visibility = path_state_ray_visibility(kg, &state);

		if(!scene_intersect(kg, &ray, visibility, &isect)) {
#ifdef __BACKGROUND__
			/* sample background shader */
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
			path_radiance_accum_background(L, throughput, L_background, state.bounce);
#endif

			break;
		}

		/* setup shading */
		ShaderData sd;
		shader_setup_from_ray(kg, &sd, &isect, &ray);
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
		shader_eval_surface(kg, &sd, rbsdf, state.flag);
		shader_merge_closures(kg, &sd);

		/* blurring of bsdf after bounces, for rays that have a small likelihood
		 * of following this particular path (diffuse, rough glossy) */
		if(kernel_data.integrator.filter_glossy != FLT_MAX) {
			float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf;

			if(blur_pdf < 1.0f) {
				float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
				shader_bsdf_blur(kg, &sd, blur_roughness);
			}
		}

#ifdef __EMISSION__
		/* emission */
		if(sd.flag & SD_EMISSION) {
			float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf);
			path_radiance_accum_emission(L, throughput, emission, state.bounce);
		}
#endif

		/* path termination. this is a strange place to put the termination, it's
		 * mainly due to the mixed in MIS that we use. gives too many unneeded
		 * shader evaluations, only need emission if we are going to terminate */
		float probability = path_state_terminate_probability(kg, &state, throughput);
		float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);

		if(terminate >= probability) {
			shader_release(kg, &sd);
			break;
		}

		throughput /= probability;

#ifdef __AO__
		/* ambient occlusion */
		if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
			/* todo: solve correlation */
			float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
			float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);

			float ao_factor = kernel_data.background.ao_factor;
			float3 ao_N;
			float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
			float3 ao_D;
			float ao_pdf;

			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);

			if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
				Ray light_ray;
				float3 ao_shadow;

				light_ray.P = ray_offset(sd.P, sd.Ng);
				light_ray.D = ao_D;
				light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
				light_ray.time = sd.time;
#endif

				if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
					path_radiance_accum_ao(L, throughput, ao_bsdf, ao_shadow, state.bounce);
			}
		}
#endif

#ifdef __EMISSION__
		if(kernel_data.integrator.use_direct_light) {
			/* sample illumination from lights to find path contribution */
			if(sd.flag & SD_BSDF_HAS_EVAL) {
				float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
				float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F);
				float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U);
				float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V);

				Ray light_ray;
				BsdfEval L_light;
				bool is_lamp;

#ifdef __OBJECT_MOTION__
				light_ray.time = sd.time;
#endif

				/* sample random light */
				if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
					/* trace shadow ray */
					float3 shadow;

					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
						/* accumulate */
						path_radiance_accum_light(L, throughput, &L_light, shadow, state.bounce, is_lamp);
					}
				}
			}
		}
#endif

		/* no BSDF? we can stop here */
		if(!(sd.flag & SD_BSDF)) {
			shader_release(kg, &sd);
			break;
		}

		/* sample BSDF */
		float bsdf_pdf;
		BsdfEval bsdf_eval;
		float3 bsdf_omega_in;
		differential3 bsdf_domega_in;
		float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
		float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
		int label;

		label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
			&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);

		shader_release(kg, &sd);

		if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
			break;

		/* modify throughput */
		path_radiance_bsdf_bounce(L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label);

		/* set labels */
		if(!(label & LABEL_TRANSPARENT)) {
			ray_pdf = bsdf_pdf;
			min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
		}

		/* update path state */
		path_state_next(kg, &state, label);

		/* setup ray */
		ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
		ray.D = bsdf_omega_in;
		ray.t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
		ray.dP = sd.dP;
		ray.dD = bsdf_domega_in;
#endif
	}
}

__device float4 kernel_path_non_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer)
{
	/* initialize */
	PathRadiance L;
	float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
	float L_transparent = 0.0f;

	path_radiance_init(&L, kernel_data.film.use_light_pass);

	float ray_pdf = 0.0f;
	PathState state;
	int rng_offset = PRNG_BASE_NUM;

	path_state_init(&state);

	for(;; rng_offset += PRNG_BOUNCE_NUM) {
		/* intersect scene */
		Intersection isect;
		uint visibility = path_state_ray_visibility(kg, &state);

		if(!scene_intersect(kg, &ray, visibility, &isect)) {
			/* eval background shader if nothing hit */
			if(kernel_data.background.transparent) {
				L_transparent += average(throughput);

#ifdef __PASSES__
				if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif
					break;
			}

#ifdef __BACKGROUND__
			/* sample background shader */
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
			path_radiance_accum_background(&L, throughput, L_background, state.bounce);
#endif

			break;
		}

		/* setup shading */
		ShaderData sd;
		shader_setup_from_ray(kg, &sd, &isect, &ray);
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
		shader_eval_surface(kg, &sd, rbsdf, state.flag);
		shader_merge_closures(kg, &sd);

		kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);

		/* holdout */
#ifdef __HOLDOUT__
		if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK))) {
			if(kernel_data.background.transparent) {
				float3 holdout_weight;
				
				if(sd.flag & SD_HOLDOUT_MASK)
					holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
				else
					holdout_weight = shader_holdout_eval(kg, &sd);

				/* any throughput is ok, should all be identical here */
				L_transparent += average(holdout_weight*throughput);
			}

			if(sd.flag & SD_HOLDOUT_MASK) {
				shader_release(kg, &sd);
				break;
			}
		}
#endif

#ifdef __EMISSION__
		/* emission */
		if(sd.flag & SD_EMISSION) {
			float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf);
			path_radiance_accum_emission(&L, throughput, emission, state.bounce);
		}
#endif

		/* transparency termination */
		if(state.flag & PATH_RAY_TRANSPARENT) {
			/* path termination. this is a strange place to put the termination, it's
			 * mainly due to the mixed in MIS that we use. gives too many unneeded
			 * shader evaluations, only need emission if we are going to terminate */
			float probability = path_state_terminate_probability(kg, &state, throughput);
			float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);

			if(terminate >= probability) {
				shader_release(kg, &sd);
				break;
			}

			throughput /= probability;
		}

#ifdef __AO__
		/* ambient occlusion */
		if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
			int num_samples = kernel_data.integrator.ao_samples;
			float num_samples_inv = 1.0f/num_samples;
			float ao_factor = kernel_data.background.ao_factor;
			float3 ao_N;
			float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);

			for(int j = 0; j < num_samples; j++) {
				/* todo: solve correlation */
				float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U);
				float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V);

				float3 ao_D;
				float ao_pdf;

				sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);

				if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
					Ray light_ray;
					float3 ao_shadow;

					light_ray.P = ray_offset(sd.P, sd.Ng);
					light_ray.D = ao_D;
					light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
					light_ray.time = sd.time;
#endif

					if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
						path_radiance_accum_ao(&L, throughput*num_samples_inv, ao_bsdf, ao_shadow, state.bounce);
				}
			}
		}
#endif

#ifdef __EMISSION__
		/* sample illumination from lights to find path contribution */
		if(sd.flag & SD_BSDF_HAS_EVAL) {
			Ray light_ray;
			BsdfEval L_light;
			bool is_lamp;

#ifdef __OBJECT_MOTION__
			light_ray.time = sd.time;
#endif

			/* lamp sampling */
			for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
				int num_samples = light_select_num_samples(kg, i);
				float num_samples_inv = 1.0f/(num_samples*kernel_data.integrator.num_all_lights);

				if(kernel_data.integrator.pdf_triangles != 0.0f)
					num_samples_inv *= 0.5f;

				for(int j = 0; j < num_samples; j++) {
					float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U);
					float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V);

					if(direct_emission(kg, &sd, i, 0.0f, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
						/* trace shadow ray */
						float3 shadow;

						if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
							/* accumulate */
							path_radiance_accum_light(&L, throughput*num_samples_inv, &L_light, shadow, state.bounce, is_lamp);
						}
					}
				}
			}

			/* mesh light sampling */
			if(kernel_data.integrator.pdf_triangles != 0.0f) {
				int num_samples = kernel_data.integrator.mesh_light_samples;
				float num_samples_inv = 1.0f/num_samples;

				if(kernel_data.integrator.num_all_lights)
					num_samples_inv *= 0.5f;

				for(int j = 0; j < num_samples; j++) {
					float light_t = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT);
					float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U);
					float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V);

					/* only sample triangle lights */
					if(kernel_data.integrator.num_all_lights)
						light_t = 0.5f*light_t;

					if(direct_emission(kg, &sd, -1, light_t, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
						/* trace shadow ray */
						float3 shadow;

						if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
							/* accumulate */
							path_radiance_accum_light(&L, throughput*num_samples_inv, &L_light, shadow, state.bounce, is_lamp);
						}
					}
				}
			}
		}
#endif

		for(int i = 0; i< sd.num_closure; i++) {
			const ShaderClosure *sc = &sd.closure[i];

			if(!CLOSURE_IS_BSDF(sc->type))
				continue;
			/* transparency is not handled here, but in outer loop */
			if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
				continue;

			int num_samples;

			if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
				num_samples = kernel_data.integrator.diffuse_samples;
			else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
				num_samples = kernel_data.integrator.glossy_samples;
			else
				num_samples = kernel_data.integrator.transmission_samples;

			float num_samples_inv = 1.0f/num_samples;

			for(int j = 0; j < num_samples; j++) {
				/* sample BSDF */
				float bsdf_pdf;
				BsdfEval bsdf_eval;
				float3 bsdf_omega_in;
				differential3 bsdf_domega_in;
				float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U);
				float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V);
				int label;

				label = shader_bsdf_sample_closure(kg, &sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
					&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);

				if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
					continue;

				/* modify throughput */
				float3 tp = throughput;
				path_radiance_bsdf_bounce(&L, &tp, &bsdf_eval, bsdf_pdf, state.bounce, label);

				/* set labels */
				float min_ray_pdf = FLT_MAX;

				if(!(label & LABEL_TRANSPARENT))
					min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);

				/* modify path state */
				PathState ps = state;
				path_state_next(kg, &ps, label);

				/* setup ray */
				Ray bsdf_ray;

				bsdf_ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
				bsdf_ray.D = bsdf_omega_in;
				bsdf_ray.t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
				bsdf_ray.dP = sd.dP;
				bsdf_ray.dD = bsdf_domega_in;
#endif
#ifdef __OBJECT_MOTION__
				bsdf_ray.time = sd.time;
#endif

				kernel_path_indirect(kg, rng, sample*num_samples, bsdf_ray, buffer,
					tp*num_samples_inv, min_ray_pdf, bsdf_pdf, ps, rng_offset+PRNG_BOUNCE_NUM, &L);
			}
		}

		/* continue in case of transparency */
		throughput *= shader_bsdf_transparency(kg, &sd);
		shader_release(kg, &sd);

		if(is_zero(throughput))
			break;

		path_state_next(kg, &state, LABEL_TRANSPARENT);
		ray.P = ray_offset(sd.P, -sd.Ng);
		ray.t -= sd.ray_length; /* clipping works through transparent */
	}

	float3 L_sum = path_radiance_sum(kg, &L);

#ifdef __CLAMP_SAMPLE__
	path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp);
#endif

	kernel_write_light_passes(kg, buffer, &L, sample);

	return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}

#endif

__device void kernel_path_trace(KernelGlobals *kg,
	__global float *buffer, __global uint *rng_state,
	int sample, int x, int y, int offset, int stride)
{
	/* buffer offset */
	int index = offset + x + y*stride;
	int pass_stride = kernel_data.film.pass_stride;

	rng_state += index;
	buffer += index*pass_stride;

	/* initialize random numbers */
	RNG rng;

	float filter_u;
	float filter_v;

	path_rng_init(kg, rng_state, sample, &rng, x, y, &filter_u, &filter_v);

	/* sample camera ray */
	Ray ray;

	float lens_u = path_rng(kg, &rng, sample, PRNG_LENS_U);
	float lens_v = path_rng(kg, &rng, sample, PRNG_LENS_V);

#ifdef __CAMERA_MOTION__
	float time = path_rng(kg, &rng, sample, PRNG_TIME);
#else
	float time = 0.0f;
#endif

	camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, &ray);

	/* integrate */
	float4 L;

	if (ray.t != 0.0f) {
#ifdef __NON_PROGRESSIVE__
		if(kernel_data.integrator.progressive)
#endif
			L = kernel_path_progressive(kg, &rng, sample, ray, buffer);
#ifdef __NON_PROGRESSIVE__
		else
			L = kernel_path_non_progressive(kg, &rng, sample, ray, buffer);
#endif
	}
	else
		L = make_float4(0.f, 0.f, 0.f, 0.f);

	/* accumulate result in output buffer */
	kernel_write_pass_float4(buffer, sample, L);

	path_rng_end(kg, rng_state, rng);
}

CCL_NAMESPACE_END