Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_random.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d4f0caff5de6048fc39156da01ad2bdc6cb4dbc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "kernel/kernel_jitter.h"

CCL_NAMESPACE_BEGIN

#ifdef __SOBOL__

/* skip initial numbers that are not as well distributed, especially the
 * first sequence is just 0 everywhere, which can be problematic for e.g.
 * path termination */
#define SOBOL_SKIP 64

/* High Dimensional Sobol */

/* van der corput radical inverse */
ccl_device uint van_der_corput(uint bits)
{
	bits = (bits << 16) | (bits >> 16);
	bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
	bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
	bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
	bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
	return bits;
}

/* sobol radical inverse */
ccl_device uint sobol(uint i)
{
	uint r = 0;

	for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1)
		if(i & 1)
			r ^= v;

	return r;
}

/* inverse of sobol radical inverse */
ccl_device uint sobol_inverse(uint i)
{
	const uint msb = 1U << 31;
	uint r = 0;

	for(uint v = 1; i; i <<= 1, v ^= v << 1)
		if(i & msb)
			r ^= v;

	return r;
}

/* multidimensional sobol with generator matrices
 * dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{
	uint result = 0;
	uint i = index;

	for(uint j = 0; i; i >>= 1, j++)
		if(i & 1)
			result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
	
	return result;
}

/* lookup index and x/y coordinate, assumes m is a power of two */
ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y)
{
	/* shift is constant per frame */
	const uint shift = frame << (m << 1);
	const uint sobol_shift = sobol(shift);
	/* van der Corput is its own inverse */
	const uint lower = van_der_corput(ex << (32 - m));
	/* need to compensate for ey difference and shift */
	const uint sobol_lower = sobol(lower);
	const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */
	const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
	/* only use m upper bits for the index (m is a power of two) */
	const uint sobol_result = delta | (delta >> m);
	const uint upper = sobol_inverse(sobol_result);
	const uint index = shift | upper | lower;
	*x = van_der_corput(index);
	*y = sobol_shift ^ sobol_result ^ sobol_lower;
	return index;
}

ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension)
{
#ifdef __CMJ__
	if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
		/* correlated multi-jittered */
		int p = *rng + dimension;
		return cmj_sample_1D(sample, num_samples, p);
	}
#endif

#ifdef __SOBOL_FULL_SCREEN__
	uint result = sobol_dimension(kg, *rng, dimension);
	float r = (float)result * (1.0f/(float)0xFFFFFFFF);
	return r;
#else
	/* compute sobol sequence value using direction vectors */
	uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
	float r = (float)result * (1.0f/(float)0xFFFFFFFF);

	/* Cranly-Patterson rotation using rng seed */
	float shift;

	/* Hash rng with dimension to solve correlation issues.
	 * See T38710, T50116.
	 */
	RNG tmp_rng = cmj_hash_simple(dimension, *rng);
	shift = tmp_rng * (1.0f/(float)0xFFFFFFFF);

	return r + shift - floorf(r + shift);
#endif
}

ccl_device_forceinline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy)
{
#ifdef __CMJ__
	if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
		/* correlated multi-jittered */
		int p = *rng + dimension;
		cmj_sample_2D(sample, num_samples, p, fx, fy);
	}
	else
#endif
	{
		/* sobol */
		*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
		*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
	}
}

ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
{
#ifdef __SOBOL_FULL_SCREEN__
	uint px, py;
	uint bits = 16; /* limits us to 65536x65536 and 65536 samples */
	uint size = 1 << bits;
	uint frame = sample;

	*rng = sobol_lookup(bits, frame, x, y, &px, &py);

	*rng ^= kernel_data.integrator.seed;

	if(sample == 0) {
		*fx = 0.5f;
		*fy = 0.5f;
	}
	else {
		*fx = size * (float)px * (1.0f/(float)0xFFFFFFFF) - x;
		*fy = size * (float)py * (1.0f/(float)0xFFFFFFFF) - y;
	}
#else
	*rng = *rng_state;

	*rng ^= kernel_data.integrator.seed;

	if(sample == 0) {
		*fx = 0.5f;
		*fy = 0.5f;
	}
	else {
		path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
	}
#endif
}

ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
{
	/* nothing to do */
}

#else

/* Linear Congruential Generator */

ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension)
{
	/* implicit mod 2^32 */
	*rng = (1103515245*(*rng) + 12345);
	return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}

ccl_device_inline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy)
{
	*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
	*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
}

ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
{
	/* load state */
	*rng = *rng_state;

	*rng ^= kernel_data.integrator.seed;

	if(sample == 0) {
		*fx = 0.5f;
		*fy = 0.5f;
	}
	else {
		path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
	}
}

ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
{
	/* store state for next sample */
	*rng_state = rng;
}

#endif

/* Linear Congruential Generator */

ccl_device uint lcg_step_uint(uint *rng)
{
	/* implicit mod 2^32 */
	*rng = (1103515245*(*rng) + 12345);
	return *rng;
}

ccl_device float lcg_step_float(uint *rng)
{
	/* implicit mod 2^32 */
	*rng = (1103515245*(*rng) + 12345);
	return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}

ccl_device uint lcg_init(uint seed)
{
	uint rng = seed;
	lcg_step_uint(&rng);
	return rng;
}

/* Path Tracing Utility Functions
 *
 * For each random number in each step of the path we must have a unique
 * dimension to avoid using the same sequence twice.
 *
 * For branches in the path we must be careful not to reuse the same number
 * in a sequence and offset accordingly. */

ccl_device_inline float path_state_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension)
{
	return path_rng_1D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension);
}

ccl_device_inline float path_state_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension)
{
	/* the rng_offset is not increased for transparent bounces. if we do then
	 * fully transparent objects can become subtly visible by the different
	 * sampling patterns used where the transparent object is.
	 *
	 * however for some random numbers that will determine if we next bounce
	 * is transparent we do need to increase the offset to avoid always making
	 * the same decision */
	int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
	return path_rng_1D(kg, rng, state->sample, state->num_samples, rng_offset + dimension);
}

ccl_device_inline void path_state_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy)
{
	path_rng_2D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension, fx, fy);
}

ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension)
{
	return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension);
}

ccl_device_inline float path_branched_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension)
{
	int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
	return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, rng_offset + dimension);
}

ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension, float *fx, float *fy)
{
	path_rng_2D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension, fx, fy);
}

/* Utitility functions to get light termination value, since it might not be needed in many cases. */
ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state)
{
	if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
		return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE);
	}
	return 0.0f;
}

ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches)
{
	if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
		return path_branched_rng_1D_for_decision(kg, rng, state, branch, num_branches, PRNG_LIGHT_TERMINATE);
	}
	return 0.0f;
}

ccl_device_inline void path_state_branch(ccl_addr_space PathState *state, int branch, int num_branches)
{
	/* path is splitting into a branch, adjust so that each branch
	 * still gets a unique sample from the same sequence */
	state->rng_offset += PRNG_BOUNCE_NUM;
	state->sample = state->sample*num_branches + branch;
	state->num_samples = state->num_samples*num_branches;
}

ccl_device_inline uint lcg_state_init(RNG *rng, int rng_offset, int sample, uint scramble)
{
	return lcg_init(*rng + rng_offset + sample*scramble);
}

ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
{
	/* implicit mod 2^32 */
	*rng = (1103515245*(*rng) + 12345);
	return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}

CCL_NAMESPACE_END