Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_shader.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d8cb6237e2728f8b964fde81641062412cec6e39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * ShaderData, used in four steps:
 *
 * Setup from incoming ray, sampled position and background.
 * Execute for surface, volume or displacement.
 * Evaluate one or more closures.
 * Release.
 *
 */

#include "kernel/closure/alloc.h"
#include "kernel/closure/bsdf_util.h"
#include "kernel/closure/bsdf.h"
#include "kernel/closure/emissive.h"

#include "kernel/svm/svm.h"

CCL_NAMESPACE_BEGIN

/* ShaderData setup from incoming ray */

#ifdef __OBJECT_MOTION__
ccl_device void shader_setup_object_transforms(KernelGlobals *kg, ShaderData *sd, float time)
{
	if(sd->object_flag & SD_OBJECT_MOTION) {
		sd->ob_tfm = object_fetch_transform_motion(kg, sd->object, time);
		sd->ob_itfm = transform_quick_inverse(sd->ob_tfm);
	}
	else {
		sd->ob_tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
		sd->ob_itfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
	}
}
#endif

ccl_device_noinline void shader_setup_from_ray(KernelGlobals *kg,
                                               ShaderData *sd,
                                               const Intersection *isect,
                                               const Ray *ray)
{
#ifdef __INSTANCING__
	sd->object = (isect->object == PRIM_NONE)? kernel_tex_fetch(__prim_object, isect->prim): isect->object;
#endif
	sd->lamp = LAMP_NONE;

	sd->type = isect->type;
	sd->flag = 0;
	sd->object_flag = kernel_tex_fetch(__object_flag,
	                                              sd->object);

	/* matrices and time */
#ifdef __OBJECT_MOTION__
	shader_setup_object_transforms(kg, sd, ray->time);
#endif
	sd->time = ray->time;

	sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
	sd->ray_length = isect->t;

#ifdef __UV__
	sd->u = isect->u;
	sd->v = isect->v;
#endif

#ifdef __HAIR__
	if(sd->type & PRIMITIVE_ALL_CURVE) {
		/* curve */
		float4 curvedata = kernel_tex_fetch(__curves, sd->prim);

		sd->shader = __float_as_int(curvedata.z);
		sd->P = curve_refine(kg, sd, isect, ray);
	}
	else
#endif
	if(sd->type & PRIMITIVE_TRIANGLE) {
		/* static triangle */
		float3 Ng = triangle_normal(kg, sd);
		sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);

		/* vectors */
		sd->P = triangle_refine(kg, sd, isect, ray);
		sd->Ng = Ng;
		sd->N = Ng;

		/* smooth normal */
		if(sd->shader & SHADER_SMOOTH_NORMAL)
			sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);

#ifdef __DPDU__
		/* dPdu/dPdv */
		triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
#endif
	}
	else {
		/* motion triangle */
		motion_triangle_shader_setup(kg, sd, isect, ray, false);
	}

	sd->I = -ray->D;

	sd->flag |= kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);

#ifdef __INSTANCING__
	if(isect->object != OBJECT_NONE) {
		/* instance transform */
		object_normal_transform_auto(kg, sd, &sd->N);
		object_normal_transform_auto(kg, sd, &sd->Ng);
#  ifdef __DPDU__
		object_dir_transform_auto(kg, sd, &sd->dPdu);
		object_dir_transform_auto(kg, sd, &sd->dPdv);
#  endif
	}
#endif

	/* backfacing test */
	bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);

	if(backfacing) {
		sd->flag |= SD_BACKFACING;
		sd->Ng = -sd->Ng;
		sd->N = -sd->N;
#ifdef __DPDU__
		sd->dPdu = -sd->dPdu;
		sd->dPdv = -sd->dPdv;
#endif
	}

#ifdef __RAY_DIFFERENTIALS__
	/* differentials */
	differential_transfer(&sd->dP, ray->dP, ray->D, ray->dD, sd->Ng, isect->t);
	differential_incoming(&sd->dI, ray->dD);
	differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
#endif
}

/* ShaderData setup from BSSRDF scatter */

#ifdef __SUBSURFACE__
#  ifndef __KERNEL_CUDA__
ccl_device
#  else
ccl_device_inline
#  endif
void shader_setup_from_subsurface(
        KernelGlobals *kg,
        ShaderData *sd,
        const Intersection *isect,
        const Ray *ray)
{
	const bool backfacing = sd->flag & SD_BACKFACING;

	/* object, matrices, time, ray_length stay the same */
	sd->flag = 0;
	sd->object_flag = kernel_tex_fetch(__object_flag, sd->object);
	sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
	sd->type = isect->type;

#  ifdef __UV__
	sd->u = isect->u;
	sd->v = isect->v;
#  endif

	/* fetch triangle data */
	if(sd->type == PRIMITIVE_TRIANGLE) {
		float3 Ng = triangle_normal(kg, sd);
		sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);

		/* static triangle */
		sd->P = triangle_refine_local(kg, sd, isect, ray);
		sd->Ng = Ng;
		sd->N = Ng;

		if(sd->shader & SHADER_SMOOTH_NORMAL)
			sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);

#  ifdef __DPDU__
		/* dPdu/dPdv */
		triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
#  endif
	}
	else {
		/* motion triangle */
		motion_triangle_shader_setup(kg, sd, isect, ray, true);
	}

	sd->flag |= kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);

#  ifdef __INSTANCING__
	if(isect->object != OBJECT_NONE) {
		/* instance transform */
		object_normal_transform_auto(kg, sd, &sd->N);
		object_normal_transform_auto(kg, sd, &sd->Ng);
#    ifdef __DPDU__
		object_dir_transform_auto(kg, sd, &sd->dPdu);
		object_dir_transform_auto(kg, sd, &sd->dPdv);
#    endif
	}
#  endif

	/* backfacing test */
	if(backfacing) {
		sd->flag |= SD_BACKFACING;
		sd->Ng = -sd->Ng;
		sd->N = -sd->N;
#  ifdef __DPDU__
		sd->dPdu = -sd->dPdu;
		sd->dPdv = -sd->dPdv;
#  endif
	}

	/* should not get used in principle as the shading will only use a diffuse
	 * BSDF, but the shader might still access it */
	sd->I = sd->N;

#  ifdef __RAY_DIFFERENTIALS__
	/* differentials */
	differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
	/* don't modify dP and dI */
#  endif
}
#endif

/* ShaderData setup from position sampled on mesh */

ccl_device_inline void shader_setup_from_sample(KernelGlobals *kg,
                                                ShaderData *sd,
                                                const float3 P,
                                                const float3 Ng,
                                                const float3 I,
                                                int shader, int object, int prim,
                                                float u, float v, float t,
                                                float time,
                                                bool object_space,
                                                int lamp)
{
	/* vectors */
	sd->P = P;
	sd->N = Ng;
	sd->Ng = Ng;
	sd->I = I;
	sd->shader = shader;
	if(prim != PRIM_NONE)
		sd->type = PRIMITIVE_TRIANGLE;
	else if(lamp != LAMP_NONE)
		sd->type = PRIMITIVE_LAMP;
	else
		sd->type = PRIMITIVE_NONE;

	/* primitive */
#ifdef __INSTANCING__
	sd->object = object;
#endif
	sd->lamp = LAMP_NONE;
	/* currently no access to bvh prim index for strand sd->prim*/
	sd->prim = prim;
#ifdef __UV__
	sd->u = u;
	sd->v = v;
#endif
	sd->time = time;
	sd->ray_length = t;

	sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
	sd->object_flag = 0;
	if(sd->object != OBJECT_NONE) {
		sd->object_flag |= kernel_tex_fetch(__object_flag,
		                                    sd->object);

#ifdef __OBJECT_MOTION__
		shader_setup_object_transforms(kg, sd, time);
	}
	else if(lamp != LAMP_NONE) {
		sd->ob_tfm  = lamp_fetch_transform(kg, lamp, false);
		sd->ob_itfm = lamp_fetch_transform(kg, lamp, true);
		sd->lamp = lamp;
#endif
	}

	/* transform into world space */
	if(object_space) {
		object_position_transform_auto(kg, sd, &sd->P);
		object_normal_transform_auto(kg, sd, &sd->Ng);
		sd->N = sd->Ng;
		object_dir_transform_auto(kg, sd, &sd->I);
	}

	if(sd->type & PRIMITIVE_TRIANGLE) {
		/* smooth normal */
		if(sd->shader & SHADER_SMOOTH_NORMAL) {
			sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);

#ifdef __INSTANCING__
			if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
				object_normal_transform_auto(kg, sd, &sd->N);
			}
#endif
		}

		/* dPdu/dPdv */
#ifdef __DPDU__
		triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);

#  ifdef __INSTANCING__
		if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
			object_dir_transform_auto(kg, sd, &sd->dPdu);
			object_dir_transform_auto(kg, sd, &sd->dPdv);
		}
#  endif
#endif
	}
	else {
#ifdef __DPDU__
		sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
		sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
	}

	/* backfacing test */
	if(sd->prim != PRIM_NONE) {
		bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);

		if(backfacing) {
			sd->flag |= SD_BACKFACING;
			sd->Ng = -sd->Ng;
			sd->N = -sd->N;
#ifdef __DPDU__
			sd->dPdu = -sd->dPdu;
			sd->dPdv = -sd->dPdv;
#endif
		}
	}

#ifdef __RAY_DIFFERENTIALS__
	/* no ray differentials here yet */
	sd->dP = differential3_zero();
	sd->dI = differential3_zero();
	sd->du = differential_zero();
	sd->dv = differential_zero();
#endif
}

/* ShaderData setup for displacement */

ccl_device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
	int object, int prim, float u, float v)
{
	float3 P, Ng, I = make_float3(0.0f, 0.0f, 0.0f);
	int shader;

	triangle_point_normal(kg, object, prim, u, v, &P, &Ng, &shader);

	/* force smooth shading for displacement */
	shader |= SHADER_SMOOTH_NORMAL;

	shader_setup_from_sample(kg, sd,
	                         P, Ng, I,
	                         shader, object, prim,
	                         u, v, 0.0f, 0.5f,
	                         !(kernel_tex_fetch(__object_flag, object) & SD_OBJECT_TRANSFORM_APPLIED),
	                         LAMP_NONE);
}

/* ShaderData setup from ray into background */

ccl_device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
	/* vectors */
	sd->P = ray->D;
	sd->N = -ray->D;
	sd->Ng = -ray->D;
	sd->I = -ray->D;
	sd->shader = kernel_data.background.surface_shader;
	sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
	sd->object_flag = 0;
	sd->time = ray->time;
	sd->ray_length = 0.0f;

#ifdef __INSTANCING__
	sd->object = PRIM_NONE;
#endif
	sd->lamp = LAMP_NONE;
	sd->prim = PRIM_NONE;
#ifdef __UV__
	sd->u = 0.0f;
	sd->v = 0.0f;
#endif

#ifdef __DPDU__
	/* dPdu/dPdv */
	sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
	sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif

#ifdef __RAY_DIFFERENTIALS__
	/* differentials */
	sd->dP = ray->dD;
	differential_incoming(&sd->dI, sd->dP);
	sd->du = differential_zero();
	sd->dv = differential_zero();
#endif
}

/* ShaderData setup from point inside volume */

#ifdef __VOLUME__
ccl_device_inline void shader_setup_from_volume(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
	/* vectors */
	sd->P = ray->P;
	sd->N = -ray->D;
	sd->Ng = -ray->D;
	sd->I = -ray->D;
	sd->shader = SHADER_NONE;
	sd->flag = 0;
	sd->object_flag = 0;
	sd->time = ray->time;
	sd->ray_length = 0.0f; /* todo: can we set this to some useful value? */

#  ifdef __INSTANCING__
	sd->object = PRIM_NONE; /* todo: fill this for texture coordinates */
#  endif
	sd->lamp = LAMP_NONE;
	sd->prim = PRIM_NONE;
	sd->type = PRIMITIVE_NONE;

#  ifdef __UV__
	sd->u = 0.0f;
	sd->v = 0.0f;
#  endif

#  ifdef __DPDU__
	/* dPdu/dPdv */
	sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
	sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#  endif

#  ifdef __RAY_DIFFERENTIALS__
	/* differentials */
	sd->dP = ray->dD;
	differential_incoming(&sd->dI, sd->dP);
	sd->du = differential_zero();
	sd->dv = differential_zero();
#  endif

	/* for NDC coordinates */
	sd->ray_P = ray->P;
	sd->ray_dP = ray->dP;
}
#endif  /* __VOLUME__ */

/* Merging */

#if defined(__BRANCHED_PATH__) || defined(__VOLUME__)
ccl_device_inline void shader_merge_closures(ShaderData *sd)
{
	/* merge identical closures, better when we sample a single closure at a time */
	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sci = &sd->closure[i];

		for(int j = i + 1; j < sd->num_closure; j++) {
			ShaderClosure *scj = &sd->closure[j];

			if(sci->type != scj->type)
				continue;
			if(!bsdf_merge(sci, scj))
				continue;

			sci->weight += scj->weight;
			sci->sample_weight += scj->sample_weight;

			int size = sd->num_closure - (j+1);
			if(size > 0) {
				for(int k = 0; k < size; k++) {
					scj[k] = scj[k+1];
				}
			}

			sd->num_closure--;
			kernel_assert(sd->num_closure >= 0);
			j--;
		}
	}
}
#endif  /* __BRANCHED_PATH__ || __VOLUME__ */

/* Defensive sampling. */

ccl_device_inline void shader_prepare_closures(ShaderData *sd,
                                               ccl_addr_space PathState *state)
{
	/* We can likely also do defensive sampling at deeper bounces, particularly
	 * for cases like a perfect mirror but possibly also others. This will need
	 * a good heuristic. */
	if(state->bounce + state->transparent_bounce == 0 && sd->num_closure > 1) {
		float sum = 0.0f;

		for(int i = 0; i < sd->num_closure; i++) {
			ShaderClosure *sc = &sd->closure[i];
			if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
				sum += sc->sample_weight;
			}
		}

		for(int i = 0; i < sd->num_closure; i++) {
			ShaderClosure *sc = &sd->closure[i];
			if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
				sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
			}
		}
	}
}


/* BSDF */

ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, ShaderData *sd, const float3 omega_in, float *pdf,
	const ShaderClosure *skip_sc, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
	/* this is the veach one-sample model with balance heuristic, some pdf
	 * factors drop out when using balance heuristic weighting */
	for(int i = 0; i < sd->num_closure; i++) {
		const ShaderClosure *sc = &sd->closure[i];

		if(sc != skip_sc && CLOSURE_IS_BSDF(sc->type)) {
			float bsdf_pdf = 0.0f;
			float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);

			if(bsdf_pdf != 0.0f) {
				bsdf_eval_accum(result_eval, sc->type, eval*sc->weight, 1.0f);
				sum_pdf += bsdf_pdf*sc->sample_weight;
			}

			sum_sample_weight += sc->sample_weight;
		}
	}

	*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}

#ifdef __BRANCHED_PATH__
ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
                                                        ShaderData *sd,
                                                        const float3 omega_in,
                                                        BsdfEval *result_eval,
                                                        float light_pdf,
                                                        bool use_mis)
{
	for(int i = 0; i < sd->num_closure; i++) {
		const ShaderClosure *sc = &sd->closure[i];
		if(CLOSURE_IS_BSDF(sc->type)) {
			float bsdf_pdf = 0.0f;
			float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
			if(bsdf_pdf != 0.0f) {
				float mis_weight = use_mis? power_heuristic(light_pdf, bsdf_pdf): 1.0f;
				bsdf_eval_accum(result_eval,
				                sc->type,
				                eval * sc->weight,
				                mis_weight);
			}
		}
	}
}
#endif  /* __BRANCHED_PATH__ */


#ifndef __KERNEL_CUDA__
ccl_device
#else
ccl_device_inline
#endif
void shader_bsdf_eval(KernelGlobals *kg,
                      ShaderData *sd,
                      const float3 omega_in,
                      BsdfEval *eval,
                      float light_pdf,
                      bool use_mis)
{
	bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);

#ifdef __BRANCHED_PATH__
	if(kernel_data.integrator.branched)
		_shader_bsdf_multi_eval_branched(kg, sd, omega_in, eval, light_pdf, use_mis);
	else
#endif
	{
		float pdf;
		_shader_bsdf_multi_eval(kg, sd, omega_in, &pdf, NULL, eval, 0.0f, 0.0f);
		if(use_mis) {
			float weight = power_heuristic(light_pdf, pdf);
			bsdf_eval_mis(eval, weight);
		}
	}
}

ccl_device_inline const ShaderClosure *shader_bsdf_pick(ShaderData *sd,
                                                        float *randu)
{
	int sampled = 0;

	if(sd->num_closure > 1) {
		/* Pick a BSDF or based on sample weights. */
		float sum = 0.0f;

		for(int i = 0; i < sd->num_closure; i++) {
			const ShaderClosure *sc = &sd->closure[i];

			if(CLOSURE_IS_BSDF(sc->type)) {
				sum += sc->sample_weight;
			}
		}

		float r = (*randu)*sum;
		float partial_sum = 0.0f;

		for(int i = 0; i < sd->num_closure; i++) {
			const ShaderClosure *sc = &sd->closure[i];

			if(CLOSURE_IS_BSDF(sc->type)) {
				float next_sum = partial_sum + sc->sample_weight;

				if(r < next_sum) {
					sampled = i;

					/* Rescale to reuse for direction sample, to better
					 * preserve stratifaction. */
					*randu = (r - partial_sum) / sc->sample_weight;
					break;
				}

				partial_sum = next_sum;
			}
		}
	}

	return &sd->closure[sampled];
}

ccl_device_inline const ShaderClosure *shader_bssrdf_pick(ShaderData *sd,
                                                          ccl_addr_space float3 *throughput,
                                                          float *randu)
{
	int sampled = 0;

	if(sd->num_closure > 1) {
		/* Pick a BSDF or BSSRDF or based on sample weights. */
		float sum_bsdf = 0.0f;
		float sum_bssrdf = 0.0f;

		for(int i = 0; i < sd->num_closure; i++) {
			const ShaderClosure *sc = &sd->closure[i];

			if(CLOSURE_IS_BSDF(sc->type)) {
				sum_bsdf += sc->sample_weight;
			}
			else if(CLOSURE_IS_BSSRDF(sc->type)) {
				sum_bssrdf += sc->sample_weight;
			}
		}

		float r = (*randu)*(sum_bsdf + sum_bssrdf);
		float partial_sum = 0.0f;

		for(int i = 0; i < sd->num_closure; i++) {
			const ShaderClosure *sc = &sd->closure[i];

			if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
				float next_sum = partial_sum + sc->sample_weight;

				if(r < next_sum) {
					if(CLOSURE_IS_BSDF(sc->type)) {
						*throughput *= (sum_bsdf + sum_bssrdf) / sum_bsdf;
						return NULL;
					}
					else {
						*throughput *= (sum_bsdf + sum_bssrdf) / sum_bssrdf;
						sampled = i;

						/* Rescale to reuse for direction sample, to better
						 * preserve stratifaction. */
						*randu = (r - partial_sum) / sc->sample_weight;
						break;
					}
				}

				partial_sum = next_sum;
			}
		}
	}

	return &sd->closure[sampled];
}

ccl_device_inline int shader_bsdf_sample(KernelGlobals *kg,
                                         ShaderData *sd,
                                         float randu, float randv,
                                         BsdfEval *bsdf_eval,
                                         float3 *omega_in,
                                         differential3 *domega_in,
                                         float *pdf)
{
	const ShaderClosure *sc = shader_bsdf_pick(sd, &randu);
	if(sc == NULL) {
		*pdf = 0.0f;
		return LABEL_NONE;
	}

	/* BSSRDF should already have been handled elsewhere. */
	kernel_assert(CLOSURE_IS_BSDF(sc->type));

	int label;
	float3 eval;

	*pdf = 0.0f;
	label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);

	if(*pdf != 0.0f) {
		bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);

		if(sd->num_closure > 1) {
			float sweight = sc->sample_weight;
			_shader_bsdf_multi_eval(kg, sd, *omega_in, pdf, sc, bsdf_eval, *pdf*sweight, sweight);
		}
	}

	return label;
}

ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, ShaderData *sd,
	const ShaderClosure *sc, float randu, float randv, BsdfEval *bsdf_eval,
	float3 *omega_in, differential3 *domega_in, float *pdf)
{
	int label;
	float3 eval;

	*pdf = 0.0f;
	label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);

	if(*pdf != 0.0f)
		bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);

	return label;
}

ccl_device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughness)
{
	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSDF(sc->type))
			bsdf_blur(kg, sc, roughness);
	}
}

ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, const ShaderData *sd)
{
	if(sd->flag & SD_HAS_ONLY_VOLUME) {
		return make_float3(1.0f, 1.0f, 1.0f);
	}
	else if(sd->flag & SD_TRANSPARENT) {
		return sd->closure_transparent_extinction;
	}
	else {
		return make_float3(0.0f, 0.0f, 0.0f);
	}
}

ccl_device void shader_bsdf_disable_transparency(KernelGlobals *kg, ShaderData *sd)
{
	if(sd->flag & SD_TRANSPARENT) {
		for(int i = 0; i < sd->num_closure; i++) {
			ShaderClosure *sc = &sd->closure[i];

			if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
				sc->sample_weight = 0.0f;
				sc->weight = make_float3(0.0f, 0.0f, 0.0f);
			}
		}

		sd->flag &= ~SD_TRANSPARENT;
	}
}

ccl_device float3 shader_bsdf_alpha(KernelGlobals *kg, ShaderData *sd)
{
	float3 alpha = make_float3(1.0f, 1.0f, 1.0f) - shader_bsdf_transparency(kg, sd);

	alpha = max(alpha, make_float3(0.0f, 0.0f, 0.0f));
	alpha = min(alpha, make_float3(1.0f, 1.0f, 1.0f));

	return alpha;
}

ccl_device float3 shader_bsdf_diffuse(KernelGlobals *kg, ShaderData *sd)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
			eval += sc->weight;
	}

	return eval;
}

ccl_device float3 shader_bsdf_glossy(KernelGlobals *kg, ShaderData *sd)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
			eval += sc->weight;
	}

	return eval;
}

ccl_device float3 shader_bsdf_transmission(KernelGlobals *kg, ShaderData *sd)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
			eval += sc->weight;
	}

	return eval;
}

ccl_device float3 shader_bsdf_subsurface(KernelGlobals *kg, ShaderData *sd)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSSRDF(sc->type) || CLOSURE_IS_BSDF_BSSRDF(sc->type))
			eval += sc->weight;
	}

	return eval;
}

ccl_device float3 shader_bsdf_average_normal(KernelGlobals *kg, ShaderData *sd)
{
	float3 N = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];
		if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
			N += sc->N*average(sc->weight);
	}

	return (is_zero(N))? sd->N : normalize(N);
}

ccl_device float3 shader_bsdf_ao(KernelGlobals *kg, ShaderData *sd, float ao_factor, float3 *N_)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);
	float3 N = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
			const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
			eval += sc->weight*ao_factor;
			N += bsdf->N*average(sc->weight);
		}
		else if(CLOSURE_IS_AMBIENT_OCCLUSION(sc->type)) {
			eval += sc->weight;
			N += sd->N*average(sc->weight);
		}
	}

	*N_ = (is_zero(N))? sd->N : normalize(N);
	return eval;
}

#ifdef __SUBSURFACE__
ccl_device float3 shader_bssrdf_sum(ShaderData *sd, float3 *N_, float *texture_blur_)
{
	float3 eval = make_float3(0.0f, 0.0f, 0.0f);
	float3 N = make_float3(0.0f, 0.0f, 0.0f);
	float texture_blur = 0.0f, weight_sum = 0.0f;

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_BSSRDF(sc->type)) {
			const Bssrdf *bssrdf = (const Bssrdf*)sc;
			float avg_weight = fabsf(average(sc->weight));

			N += bssrdf->N*avg_weight;
			eval += sc->weight;
			texture_blur += bssrdf->texture_blur*avg_weight;
			weight_sum += avg_weight;
		}
	}

	if(N_)
		*N_ = (is_zero(N))? sd->N: normalize(N);

	if(texture_blur_)
		*texture_blur_ = safe_divide(texture_blur, weight_sum);

	return eval;
}
#endif  /* __SUBSURFACE__ */

/* Emission */

ccl_device bool shader_has_constant_emission(KernelGlobals *kg, ShaderData *sd)
{
	int shader_flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
	return (shader_flag & SD_HAS_CONSTANT_EMISSION) != 0;
}

ccl_device float3 shader_get_constant_emission(KernelGlobals *kg, ShaderData *sd)
{
	float3 eval;
	eval.x = __int_as_float(kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE + 2));
	eval.y = __int_as_float(kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE + 3));
	eval.z = __int_as_float(kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE + 4));
	return eval;
}

ccl_device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
{
	if(sd->flag & SD_EMISSION) {
		return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
	}
	else {
		return make_float3(0.0f, 0.0f, 0.0f);
	}
}

/* Holdout */

ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
{
	float3 weight = make_float3(0.0f, 0.0f, 0.0f);

	for(int i = 0; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_HOLDOUT(sc->type))
			weight += sc->weight;
	}

	return weight;
}

/* Shader Evaluation */

ccl_device void shader_eval(KernelGlobals *kg, ShaderData *sd,
	ccl_addr_space PathState *state, ShaderEvalIntent intent)
{
	if(intent == SHADER_EVAL_INTENT_SKIP) {
		return;
	}

	uint path_flag = 0;
	sd->num_closure = 0;
	sd->num_closure_left = 0;

	switch(intent) {
		case SHADER_EVAL_INTENT_SKIP:
			kernel_assert(0);
			return;
		case SHADER_EVAL_INTENT_SURFACE:
			path_flag = state->flag;
			sd->num_closure_left = kernel_data.integrator.max_closures;
			break;
		case SHADER_EVAL_INTENT_EMISSION:
			if(shader_has_constant_emission(kg, sd)) {
				return;
			}
			intent = SHADER_EVAL_INTENT_SURFACE;
			break;
		case SHADER_EVAL_INTENT_SHADOW:
			path_flag = PATH_RAY_SHADOW;
			intent = SHADER_EVAL_INTENT_SURFACE;
			break;
		case SHADER_EVAL_INTENT_BACKGROUND:
			break;
		case SHADER_EVAL_INTENT_BAKE:
			sd->num_closure_left = kernel_data.integrator.max_closures;
			intent = SHADER_EVAL_INTENT_SURFACE;
			break;
		default:
			kernel_assert(0);
			return;
	}

	/* At this point `intent` has been set to either SHADER_EVAL_INTENT_SURFACE or SHADER_EVAL_INTENT_BACKGROUND. */
	kernel_assert(intent == SHADER_EVAL_INTENT_SURFACE || intent == SHADER_EVAL_INTENT_BACKGROUND);

	/* eval shader */
#ifdef __OSL__
	/* OSL */
	if(kg->osl) {
		if(intent == SHADER_EVAL_INTENT_SURFACE) {
			OSLShader::eval_surface(kg, sd, state, path_flag);
		}
		else if(intent == SHADER_EVAL_INTENT_BACKGROUND) {
			OSLShader::eval_background(kg, sd, state, path_flag);
		}
	}
	else
#endif  /* __OSL__ */
	{
#ifdef __SVM__
		/* eval nodes */
		svm_eval_nodes(kg, sd, state, SHADER_TYPE_SURFACE, path_flag);
#else
		/* defaults when svm not built in */
		if(intent == SHADER_EVAL_INTENT_SURFACE) {
			DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd,
				                                         sizeof(DiffuseBsdf),
				                                         make_float3(0.8f, 0.8f, 0.8f));
			bsdf->N = sd->N;
			sd->flag |= bsdf_diffuse_setup(bsdf);
		}
#endif
	}

	/* finalization */
	if(intent == SHADER_EVAL_INTENT_SURFACE) {
		if(sd->flag & SD_BSDF_NEEDS_LCG) {
			sd->lcg_state = lcg_state_init_addrspace(state, 0xb4bc3953);
		}
	}
}

/* Background Evaluation */

ccl_device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __SVM__
	if(sd->flag & SD_EMISSION) {
		return sd->closure_emission_background;
	}
	else {
		return make_float3(0.0f, 0.0f, 0.0f);
	}
#else  /* __SVM__ */
	return make_float3(0.8f, 0.8f, 0.8f);
#endif  /* __SVM__ */
}

/* Volume */

#ifdef __VOLUME__

ccl_device_inline void _shader_volume_phase_multi_eval(const ShaderData *sd, const float3 omega_in, float *pdf,
	int skip_phase, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
	for(int i = 0; i < sd->num_closure; i++) {
		if(i == skip_phase)
			continue;

		const ShaderClosure *sc = &sd->closure[i];

		if(CLOSURE_IS_PHASE(sc->type)) {
			float phase_pdf = 0.0f;
			float3 eval = volume_phase_eval(sd, sc, omega_in, &phase_pdf);

			if(phase_pdf != 0.0f) {
				bsdf_eval_accum(result_eval, sc->type, eval, 1.0f);
				sum_pdf += phase_pdf*sc->sample_weight;
			}

			sum_sample_weight += sc->sample_weight;
		}
	}

	*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}

ccl_device void shader_volume_phase_eval(KernelGlobals *kg, const ShaderData *sd,
	const float3 omega_in, BsdfEval *eval, float *pdf)
{
	bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);

	_shader_volume_phase_multi_eval(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
}

ccl_device int shader_volume_phase_sample(KernelGlobals *kg, const ShaderData *sd,
	float randu, float randv, BsdfEval *phase_eval,
	float3 *omega_in, differential3 *domega_in, float *pdf)
{
	int sampled = 0;

	if(sd->num_closure > 1) {
		/* pick a phase closure based on sample weights */
		float sum = 0.0f;

		for(sampled = 0; sampled < sd->num_closure; sampled++) {
			const ShaderClosure *sc = &sd->closure[sampled];

			if(CLOSURE_IS_PHASE(sc->type))
				sum += sc->sample_weight;
		}

		float r = randu*sum;
		float partial_sum = 0.0f;

		for(sampled = 0; sampled < sd->num_closure; sampled++) {
			const ShaderClosure *sc = &sd->closure[sampled];

			if(CLOSURE_IS_PHASE(sc->type)) {
				float next_sum = partial_sum + sc->sample_weight;

				if(r <= next_sum) {
					/* Rescale to reuse for BSDF direction sample. */
					randu = (r - partial_sum) / sc->sample_weight;
					break;
				}

				partial_sum = next_sum;
			}
		}

		if(sampled == sd->num_closure) {
			*pdf = 0.0f;
			return LABEL_NONE;
		}
	}

	/* todo: this isn't quite correct, we don't weight anisotropy properly
	 * depending on color channels, even if this is perhaps not a common case */
	const ShaderClosure *sc = &sd->closure[sampled];
	int label;
	float3 eval;

	*pdf = 0.0f;
	label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);

	if(*pdf != 0.0f) {
		bsdf_eval_init(phase_eval, sc->type, eval, kernel_data.film.use_light_pass);
	}

	return label;
}

ccl_device int shader_phase_sample_closure(KernelGlobals *kg, const ShaderData *sd,
	const ShaderClosure *sc, float randu, float randv, BsdfEval *phase_eval,
	float3 *omega_in, differential3 *domega_in, float *pdf)
{
	int label;
	float3 eval;

	*pdf = 0.0f;
	label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);

	if(*pdf != 0.0f)
		bsdf_eval_init(phase_eval, sc->type, eval, kernel_data.film.use_light_pass);

	return label;
}

/* Volume Evaluation */

ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
                                          ShaderData *sd,
                                          ccl_addr_space PathState *state,
                                          ccl_addr_space VolumeStack *stack,
                                          int path_flag,
                                          int max_closure)
{
	/* reset closures once at the start, we will be accumulating the closures
	 * for all volumes in the stack into a single array of closures */
	sd->num_closure = 0;
	sd->num_closure_left = max_closure;
	sd->flag = 0;
	sd->object_flag = 0;

	for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
		/* setup shaderdata from stack. it's mostly setup already in
		 * shader_setup_from_volume, this switching should be quick */
		sd->object = stack[i].object;
		sd->lamp = LAMP_NONE;
		sd->shader = stack[i].shader;

		sd->flag &= ~SD_SHADER_FLAGS;
		sd->flag |= kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
		sd->object_flag &= ~SD_OBJECT_FLAGS;

		if(sd->object != OBJECT_NONE) {
			sd->object_flag |= kernel_tex_fetch(__object_flag, sd->object);

#ifdef __OBJECT_MOTION__
			/* todo: this is inefficient for motion blur, we should be
			 * caching matrices instead of recomputing them each step */
			shader_setup_object_transforms(kg, sd, sd->time);
#endif
		}

		/* evaluate shader */
#ifdef __SVM__
#  ifdef __OSL__
		if(kg->osl) {
			OSLShader::eval_volume(kg, sd, state, path_flag);
		}
		else
#  endif
		{
			svm_eval_nodes(kg, sd, state, SHADER_TYPE_VOLUME, path_flag);
		}
#endif

		/* merge closures to avoid exceeding number of closures limit */
		if(i > 0)
			shader_merge_closures(sd);
	}
}

#endif  /* __VOLUME__ */

/* Displacement Evaluation */

ccl_device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state)
{
	sd->num_closure = 0;
	sd->num_closure_left = 0;

	/* this will modify sd->P */
#ifdef __SVM__
#  ifdef __OSL__
	if(kg->osl)
		OSLShader::eval_displacement(kg, sd, state);
	else
#  endif
	{
		svm_eval_nodes(kg, sd, state, SHADER_TYPE_DISPLACEMENT, 0);
	}
#endif
}

/* Transparent Shadows */

#ifdef __TRANSPARENT_SHADOWS__
ccl_device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect)
{
	int prim = kernel_tex_fetch(__prim_index, isect->prim);
	int shader = 0;

#ifdef __HAIR__
	if(kernel_tex_fetch(__prim_type, isect->prim) & PRIMITIVE_ALL_TRIANGLE) {
#endif
		shader = kernel_tex_fetch(__tri_shader, prim);
#ifdef __HAIR__
	}
	else {
		float4 str = kernel_tex_fetch(__curves, prim);
		shader = __float_as_int(str.z);
	}
#endif
	int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*SHADER_SIZE);

	return (flag & SD_HAS_TRANSPARENT_SHADOW) != 0;
}
#endif  /* __TRANSPARENT_SHADOWS__ */

CCL_NAMESPACE_END