Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_shadow.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0426e0a62c9cb5be5b8d3c422bf9babc7e8b0c7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Attenuate throughput accordingly to the given intersection event.
 * Returns true if the throughput is zero and traversal can be aborted.
 */
ccl_device_forceinline bool shadow_handle_transparent_isect(
        KernelGlobals *kg,
        ShaderData *shadow_sd,
        ccl_addr_space PathState *state,
#    ifdef __VOLUME__
        ccl_addr_space struct PathState *volume_state,
#    endif
        Intersection *isect,
        Ray *ray,
        float3 *throughput)
{
#ifdef __VOLUME__
	/* Attenuation between last surface and next surface. */
	if(volume_state->volume_stack[0].shader != SHADER_NONE) {
		Ray segment_ray = *ray;
		segment_ray.t = isect->t;
		kernel_volume_shadow(kg,
		                     shadow_sd,
		                     volume_state,
		                     &segment_ray,
		                     throughput);
	}
#endif
	/* Setup shader data at surface. */
	shader_setup_from_ray(kg, shadow_sd, isect, ray);
	/* Attenuation from transparent surface. */
	if(!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
		path_state_modify_bounce(state, true);
		shader_eval_surface(kg,
		                    shadow_sd,
		                    NULL,
		                    state,
		                    0.0f,
		                    PATH_RAY_SHADOW,
		                    SHADER_CONTEXT_SHADOW);
		path_state_modify_bounce(state, false);
		*throughput *= shader_bsdf_transparency(kg, shadow_sd);
	}
	/* Stop if all light is blocked. */
	if(is_zero(*throughput)) {
		return true;
	}
#ifdef __VOLUME__
	/* Exit/enter volume. */
	kernel_volume_stack_enter_exit(kg, shadow_sd, volume_state->volume_stack);
#endif
	return false;
}

/* Special version which only handles opaque shadows. */
ccl_device bool shadow_blocked_opaque(KernelGlobals *kg,
                                      ShaderData *shadow_sd,
                                      ccl_addr_space PathState *state,
                                      Ray *ray,
                                      Intersection *isect,
                                      float3 *shadow)
{
	const bool blocked = scene_intersect(kg,
	                                     *ray,
	                                     PATH_RAY_SHADOW_OPAQUE,
	                                     isect,
	                                     NULL,
	                                     0.0f, 0.0f);
#ifdef __VOLUME__
	if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
		/* Apply attenuation from current volume shader. */
		kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
	}
#endif
	return blocked;
}

#ifdef __TRANSPARENT_SHADOWS__
#  ifdef __SHADOW_RECORD_ALL__
/* Shadow function to compute how much light is blocked,
 *
 * We trace a single ray. If it hits any opaque surface, or more than a given
 * number of transparent surfaces is hit, then we consider the geometry to be
 * entirely blocked. If not, all transparent surfaces will be recorded and we
 * will shade them one by one to determine how much light is blocked. This all
 * happens in one scene intersection function.
 *
 * Recording all hits works well in some cases but may be slower in others. If
 * we have many semi-transparent hairs, one intersection may be faster because
 * you'd be reinteresecting the same hairs a lot with each step otherwise. If
 * however there is mostly binary transparency then we may be recording many
 * unnecessary intersections when one of the first surfaces blocks all light.
 *
 * From tests in real scenes it seems the performance loss is either minimal,
 * or there is a performance increase anyway due to avoiding the need to send
 * two rays with transparent shadows.
 *
 * On CPU it'll handle all transparent bounces (by allocating storage for
 * intersections when they don't fit into the stack storage).
 *
 * On GPU it'll only handle SHADOW_STACK_MAX_HITS-1 intersections, so this
 * is something to be kept an eye on.
 */

#    define SHADOW_STACK_MAX_HITS 64

/* Actual logic with traversal loop implementation which is free from device
 * specific tweaks.
 *
 * Note that hits array should be as big as max_hits+1.
 */
ccl_device bool shadow_blocked_transparent_all_loop(KernelGlobals *kg,
                                                    ShaderData *shadow_sd,
                                                    ccl_addr_space PathState *state,
                                                    const int skip_object,
                                                    Ray *ray,
                                                    Intersection *hits,
                                                    uint max_hits,
                                                    float3 *shadow)
{
	/* Intersect to find an opaque surface, or record all transparent
	 * surface hits.
	 */
	uint num_hits;
	const bool blocked = scene_intersect_shadow_all(kg,
	                                                ray,
	                                                hits,
	                                                skip_object,
	                                                max_hits,
	                                                &num_hits);
	/* If no opaque surface found but we did find transparent hits,
	 * shade them.
	 */
	if(!blocked && num_hits > 0) {
		float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
		float3 Pend = ray->P + ray->D*ray->t;
		float last_t = 0.0f;
		int bounce = state->transparent_bounce;
		Intersection *isect = hits;
#    ifdef __VOLUME__
#      ifdef __SPLIT_KERNEL__
		ccl_addr_space PathState *ps = &kernel_split_state.state_shadow[ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0)];
#      else
		PathState ps_object;
		PathState *ps = &ps_object;
#      endif
		*ps = *state;
#    endif
		sort_intersections(hits, num_hits);
		for(int hit = 0; hit < num_hits; hit++, isect++) {
			/* Adjust intersection distance for moving ray forward. */
			float new_t = isect->t;
			isect->t -= last_t;
			/* Skip hit if we did not move forward, step by step raytracing
			 * would have skipped it as well then.
			 */
			if(last_t == new_t) {
				continue;
			}
			last_t = new_t;
			/* Attenuate the throughput. */
			if(shadow_handle_transparent_isect(kg,
			                                   shadow_sd,
			                                   state,
#ifdef __VOLUME__
			                                   ps,
#endif
			                                   isect,
			                                   ray,
			                                   &throughput))
			{
				return true;
			}
			/* Move ray forward. */
			ray->P = shadow_sd->P;
			if(ray->t != FLT_MAX) {
				ray->D = normalize_len(Pend - ray->P, &ray->t);
			}
			bounce++;
		}
#    ifdef __VOLUME__
		/* Attenuation for last line segment towards light. */
		if(ps->volume_stack[0].shader != SHADER_NONE) {
			kernel_volume_shadow(kg, shadow_sd, ps, ray, &throughput);
		}
#    endif
		*shadow = throughput;
		return is_zero(throughput);
	}
#    ifdef __VOLUME__
	if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
		/* Apply attenuation from current volume shader/ */
		kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
	}
#    endif
	return blocked;
}

/* Here we do all device specific trickery before invoking actual traversal
 * loop to help readability of the actual logic.
 */
ccl_device bool shadow_blocked_transparent_all(KernelGlobals *kg,
                                               ShaderData *shadow_sd,
                                               ccl_addr_space PathState *state,
                                               const int skip_object,
                                               Ray *ray,
                                               uint max_hits,
                                               float3 *shadow)
{
#    ifdef __SPLIT_KERNEL__
	Intersection hits_[SHADOW_STACK_MAX_HITS];
	Intersection *hits = &hits_[0];
#    elif defined(__KERNEL_CUDA__)
	Intersection *hits = kg->hits_stack;
#    else
	Intersection hits_stack[SHADOW_STACK_MAX_HITS];
	Intersection *hits = hits_stack;
#    endif
#    ifndef __KERNEL_GPU__
	/* Prefer to use stack but use dynamic allocation if too deep max hits
	 * we need max_hits + 1 storage space due to the logic in
	 * scene_intersect_shadow_all which will first store and then check if
	 * the limit is exceeded.
	 *
	 * Ignore this on GPU because of slow/unavailable malloc().
	 */
	if(max_hits + 1 > SHADOW_STACK_MAX_HITS) {
		if(kg->transparent_shadow_intersections == NULL) {
			const int transparent_max_bounce = kernel_data.integrator.transparent_max_bounce;
			kg->transparent_shadow_intersections =
				(Intersection*)malloc(sizeof(Intersection)*(transparent_max_bounce + 1));
		}
		hits = kg->transparent_shadow_intersections;
	}
#    endif  /* __KERNEL_GPU__ */
	/* Invoke actual traversal. */
	return shadow_blocked_transparent_all_loop(kg,
	                                           shadow_sd,
	                                           state,
	                                           skip_object,
	                                           ray,
	                                           hits,
	                                           max_hits,
	                                           shadow);
}
#  endif  /* __SHADOW_RECORD_ALL__ */

#  if defined(__KERNEL_GPU__) || !defined(__SHADOW_RECORD_ALL__)
/* Shadow function to compute how much light is blocked,
 *
 * Here we raytrace from one transparent surface to the next step by step.
 * To minimize overhead in cases where we don't need transparent shadows, we
 * first trace a regular shadow ray. We check if the hit primitive was
 * potentially transparent, and only in that case start marching. this gives
 * one extra ray cast for the cases were we do want transparency.
 */

/* This function is only implementing device-independent traversal logic
 * which requires some precalculation done.
 */
ccl_device bool shadow_blocked_transparent_stepped_loop(
        KernelGlobals *kg,
        ShaderData *shadow_sd,
        ccl_addr_space PathState *state,
        const int skip_object,
        Ray *ray,
        Intersection *isect,
        const bool blocked,
        const bool is_transparent_isect,
        float3 *shadow)
{
	if((blocked && is_transparent_isect) || skip_object != OBJECT_NONE) {
		float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
		float3 Pend = ray->P + ray->D*ray->t;
		int bounce = state->transparent_bounce;
#    ifdef __VOLUME__
#      ifdef __SPLIT_KERNEL__
		ccl_addr_space PathState *ps = &kernel_split_state.state_shadow[ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0)];
#      else
		PathState ps_object;
		PathState *ps = &ps_object;
#      endif
		*ps = *state;
#    endif
		for(;;) {
			if(bounce >= kernel_data.integrator.transparent_max_bounce) {
				return true;
			}
			if(!scene_intersect(kg,
			                    *ray,
			                    PATH_RAY_SHADOW_TRANSPARENT,
			                    isect,
			                    NULL,
			                    0.0f, 0.0f))
			{
				break;
			}
#ifdef __SHADOW_TRICKS__
			if(skip_object != OBJECT_NONE) {
				const int isect_object = (isect->object == PRIM_NONE)
				        ? kernel_tex_fetch(__prim_object, isect->prim)
				        : isect->object;
				if(isect_object == skip_object) {
					shader_setup_from_ray(kg, shadow_sd, isect, ray);
					/* Move ray forward. */
					ray->P = ray_offset(shadow_sd->P, -shadow_sd->Ng);
					if(ray->t != FLT_MAX) {
						ray->D = normalize_len(Pend - ray->P, &ray->t);
					}
					bounce++;
					continue;
				}
			}
#endif
			if(!shader_transparent_shadow(kg, isect)) {
				return true;
			}
			/* Attenuate the throughput. */
			if(shadow_handle_transparent_isect(kg,
			                                   shadow_sd,
			                                   state,
#ifdef __VOLUME__
			                                   ps,
#endif
			                                   isect,
			                                   ray,
			                                   &throughput))
			{
				return true;
			}
			/* Move ray forward. */
			ray->P = ray_offset(shadow_sd->P, -shadow_sd->Ng);
			if(ray->t != FLT_MAX) {
				ray->D = normalize_len(Pend - ray->P, &ray->t);
			}
			bounce++;
		}
#    ifdef __VOLUME__
		/* Attenuation for last line segment towards light. */
		if(ps->volume_stack[0].shader != SHADER_NONE) {
			kernel_volume_shadow(kg, shadow_sd, ps, ray, &throughput);
		}
#    endif
		*shadow *= throughput;
		return is_zero(throughput);
	}
#    ifdef __VOLUME__
	if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
		/* Apply attenuation from current volume shader. */
		kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
	}
#    endif
	return blocked;
}

ccl_device bool shadow_blocked_transparent_stepped(
        KernelGlobals *kg,
        ShaderData *shadow_sd,
        ccl_addr_space PathState *state,
        const int skip_object,
        Ray *ray,
        Intersection *isect,
        float3 *shadow)
{
	bool blocked, is_transparent_isect;
	if (skip_object == OBJECT_NONE) {
		blocked = scene_intersect(kg,
		                          *ray,
		                          PATH_RAY_SHADOW_OPAQUE,
		                          isect,
		                          NULL,
		                          0.0f, 0.0f);
		is_transparent_isect = blocked
			        ? shader_transparent_shadow(kg, isect)
			        : false;
	}
	else {
		blocked = false;
		is_transparent_isect = false;
	}
	return shadow_blocked_transparent_stepped_loop(kg,
	                                               shadow_sd,
	                                               state,
	                                               skip_object,
	                                               ray,
	                                               isect,
	                                               blocked,
	                                               is_transparent_isect,
	                                               shadow);
}

#  endif  /* __KERNEL_GPU__ || !__SHADOW_RECORD_ALL__ */
#endif /* __TRANSPARENT_SHADOWS__ */

ccl_device_inline bool shadow_blocked(KernelGlobals *kg,
                                      ShaderData *shadow_sd,
                                      ccl_addr_space PathState *state,
                                      Ray *ray_input,
                                      float3 *shadow)
{
	Ray *ray = ray_input;
	Intersection isect;
	/* Some common early checks. */
	*shadow = make_float3(1.0f, 1.0f, 1.0f);
	if(ray->t == 0.0f) {
		return false;
	}
#ifdef __SHADOW_TRICKS__
    const int skip_object = state->catcher_object;
#else
    const int skip_object = OBJECT_NONE;
#endif
	/* Do actual shadow shading. */
	/* First of all, we check if integrator requires transparent shadows.
	 * if not, we use simplest and fastest ever way to calculate occlusion.
	 *
	 * NOTE: We can't do quick opaque test here if we are on shadow-catcher
	 * path because we don't want catcher object to be casting shadow here.
	 */
#ifdef __TRANSPARENT_SHADOWS__
	if(!kernel_data.integrator.transparent_shadows &&
	   skip_object == OBJECT_NONE)
#endif
	{
		return shadow_blocked_opaque(kg,
		                             shadow_sd,
		                             state,
		                             ray,
		                             &isect,
		                             shadow);
	}
#ifdef __TRANSPARENT_SHADOWS__
#  ifdef __SHADOW_RECORD_ALL__
	/* For the transparent shadows we try to use record-all logic on the
	 * devices which supports this.
	 */
	const int transparent_max_bounce = kernel_data.integrator.transparent_max_bounce;
	/* Check transparent bounces here, for volume scatter which can do
	 * lighting before surface path termination is checked.
	 */
	if(state->transparent_bounce >= transparent_max_bounce) {
		return true;
	}
	const uint max_hits = transparent_max_bounce - state->transparent_bounce - 1;
#    ifdef __KERNEL_GPU__
	/* On GPU we do trickey with tracing opaque ray first, this avoids speed
	 * regressions in some files.
	 *
	 * TODO(sergey): Check why using record-all behavior causes slowdown in such
	 * cases. Could that be caused by a higher spill pressure?
	 */
	const bool blocked = scene_intersect(kg,
	                                     *ray,
	                                     PATH_RAY_SHADOW_OPAQUE,
	                                     &isect,
	                                     NULL,
	                                     0.0f, 0.0f);
	const bool is_transparent_isect = blocked
	        ? shader_transparent_shadow(kg, &isect)
	        : false;
	if(!blocked || !is_transparent_isect ||
	   max_hits + 1 >= SHADOW_STACK_MAX_HITS)
	{
		return shadow_blocked_transparent_stepped_loop(kg,
		                                               shadow_sd,
		                                               state,
		                                               skip_object,
		                                               ray,
		                                               &isect,
		                                               blocked,
		                                               is_transparent_isect,
		                                               shadow);
	}
#    endif  /* __KERNEL_GPU__ */
	return shadow_blocked_transparent_all(kg,
	                                      shadow_sd,
	                                      state,
	                                      skip_object,
	                                      ray,
	                                      max_hits,
	                                      shadow);
#  else  /* __SHADOW_RECORD_ALL__ */
	/* Fallback to a slowest version which works on all devices. */
	return shadow_blocked_transparent_stepped(kg,
	                                          shadow_sd,
	                                          state,
	                                          skip_object,
	                                          ray,
	                                          &isect,
	                                          shadow);
#  endif  /* __SHADOW_RECORD_ALL__ */
#endif  /* __TRANSPARENT_SHADOWS__ */
}

#undef SHADOW_STACK_MAX_HITS

CCL_NAMESPACE_END