Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_shadow.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 439e8bbd585a4da3e477d4ab61a773622f7bf84a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

CCL_NAMESPACE_BEGIN

#ifdef __SHADOW_RECORD_ALL__

/* Shadow function to compute how much light is blocked, CPU variation.
 *
 * We trace a single ray. If it hits any opaque surface, or more than a given
 * number of transparent surfaces is hit, then we consider the geometry to be
 * entirely blocked. If not, all transparent surfaces will be recorded and we
 * will shade them one by one to determine how much light is blocked. This all
 * happens in one scene intersection function.
 *
 * Recording all hits works well in some cases but may be slower in others. If
 * we have many semi-transparent hairs, one intersection may be faster because
 * you'd be reinteresecting the same hairs a lot with each step otherwise. If
 * however there is mostly binary transparency then we may be recording many
 * unnecessary intersections when one of the first surfaces blocks all light.
 *
 * From tests in real scenes it seems the performance loss is either minimal,
 * or there is a performance increase anyway due to avoiding the need to send
 * two rays with transparent shadows.
 *
 * This is CPU only because of qsort, and malloc or high stack space usage to
 * record all these intersections. */

ccl_device_noinline int shadow_intersections_compare(const void *a, const void *b)
{
	const Intersection *isect_a = (const Intersection*)a;
	const Intersection *isect_b = (const Intersection*)b;

	if(isect_a->t < isect_b->t)
		return -1;
	else if(isect_a->t > isect_b->t)
		return 1;
	else
		return 0;
}

#define STACK_MAX_HITS 64

ccl_device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow)
{
	*shadow = make_float3(1.0f, 1.0f, 1.0f);

	if(ray->t == 0.0f)
		return false;
	
	bool blocked;

	if(kernel_data.integrator.transparent_shadows) {
		/* check transparent bounces here, for volume scatter which can do
		 * lighting before surface path termination is checked */
		if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
			return true;

		/* intersect to find an opaque surface, or record all transparent surface hits */
		Intersection hits_stack[STACK_MAX_HITS];
		Intersection *hits = hits_stack;
		uint max_hits = kernel_data.integrator.transparent_max_bounce - state->transparent_bounce - 1;

		/* prefer to use stack but use dynamic allocation if too deep max hits
		 * we need max_hits + 1 storage space due to the logic in
		 * scene_intersect_shadow_all which will first store and then check if
		 * the limit is exceeded */
		if(max_hits + 1 > STACK_MAX_HITS)
			hits = (Intersection*)malloc(sizeof(Intersection)*(max_hits + 1));

		uint num_hits;
		blocked = scene_intersect_shadow_all(kg, ray, hits, max_hits, &num_hits);

		/* if no opaque surface found but we did find transparent hits, shade them */
		if(!blocked && num_hits > 0) {
			float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
			float3 Pend = ray->P + ray->D*ray->t;
			float last_t = 0.0f;
			int bounce = state->transparent_bounce;
			Intersection *isect = hits;
#ifdef __VOLUME__
			PathState ps = *state;
#endif

			qsort(hits, num_hits, sizeof(Intersection), shadow_intersections_compare);

			for(int hit = 0; hit < num_hits; hit++, isect++) {
				/* adjust intersection distance for moving ray forward */
				float new_t = isect->t;
				isect->t -= last_t;

				/* skip hit if we did not move forward, step by step raytracing
				 * would have skipped it as well then */
				if(last_t == new_t)
					continue;

				last_t = new_t;

#ifdef __VOLUME__
				/* attenuation between last surface and next surface */
				if(ps.volume_stack[0].shader != SHADER_NONE) {
					Ray segment_ray = *ray;
					segment_ray.t = isect->t;
					kernel_volume_shadow(kg, &ps, &segment_ray, &throughput);
				}
#endif

				/* setup shader data at surface */
				ShaderData sd;
				shader_setup_from_ray(kg, &sd, isect, ray, state->bounce+1, bounce);

				/* attenuation from transparent surface */
				if(!(sd.flag & SD_HAS_ONLY_VOLUME)) {
					shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
					throughput *= shader_bsdf_transparency(kg, &sd);
				}

				/* stop if all light is blocked */
				if(is_zero(throughput)) {
					/* free dynamic storage */
					if(hits != hits_stack)
						free(hits);
					return true;
				}

				/* move ray forward */
				ray->P = sd.P;
				if(ray->t != FLT_MAX)
					ray->D = normalize_len(Pend - ray->P, &ray->t);

#ifdef __VOLUME__
				/* exit/enter volume */
				kernel_volume_stack_enter_exit(kg, &sd, ps.volume_stack);
#endif

				bounce++;
			}

#ifdef __VOLUME__
			/* attenuation for last line segment towards light */
			if(ps.volume_stack[0].shader != SHADER_NONE)
				kernel_volume_shadow(kg, &ps, ray, &throughput);
#endif

			*shadow = throughput;

			if(hits != hits_stack)
				free(hits);
			return is_zero(throughput);
		}

		/* free dynamic storage */
		if(hits != hits_stack)
			free(hits);
	}
	else {
		Intersection isect;
#ifdef __HAIR__
		blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f);
#else
		blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect);
#endif
	}

#ifdef __VOLUME__
	if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
		/* apply attenuation from current volume shader */
		kernel_volume_shadow(kg, state, ray, shadow);
	}
#endif

	return blocked;
}

#else

/* Shadow function to compute how much light is blocked, GPU variation.
 *
 * Here we raytrace from one transparent surface to the next step by step.
 * To minimize overhead in cases where we don't need transparent shadows, we
 * first trace a regular shadow ray. We check if the hit primitive was
 * potentially transparent, and only in that case start marching. this gives
 * one extra ray cast for the cases were we do want transparency. */

ccl_device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow)
{
	*shadow = make_float3(1.0f, 1.0f, 1.0f);

	if(ray->t == 0.0f)
		return false;

	Intersection isect;
#ifdef __HAIR__
	bool blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f);
#else
	bool blocked = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect);
#endif

#ifdef __TRANSPARENT_SHADOWS__
	if(blocked && kernel_data.integrator.transparent_shadows) {
		if(shader_transparent_shadow(kg, &isect)) {
			float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
			float3 Pend = ray->P + ray->D*ray->t;
			int bounce = state->transparent_bounce;
#ifdef __VOLUME__
			PathState ps = *state;
#endif

			for(;;) {
				if(bounce >= kernel_data.integrator.transparent_max_bounce)
					return true;

#ifdef __HAIR__
				if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect, NULL, 0.0f, 0.0f))
#else
				if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect))
#endif
				{

#ifdef __VOLUME__
					/* attenuation for last line segment towards light */
					if(ps.volume_stack[0].shader != SHADER_NONE)
						kernel_volume_shadow(kg, &ps, ray, &throughput);
#endif

					*shadow *= throughput;

					return false;
				}

				if(!shader_transparent_shadow(kg, &isect))
					return true;

#ifdef __VOLUME__
				/* attenuation between last surface and next surface */
				if(ps.volume_stack[0].shader != SHADER_NONE) {
					Ray segment_ray = *ray;
					segment_ray.t = isect.t;
					kernel_volume_shadow(kg, &ps, &segment_ray, &throughput);
				}
#endif

				/* setup shader data at surface */
				ShaderData sd;
				shader_setup_from_ray(kg, &sd, &isect, ray, state->bounce+1, bounce);

				/* attenuation from transparent surface */
				if(!(sd.flag & SD_HAS_ONLY_VOLUME)) {
					shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
					throughput *= shader_bsdf_transparency(kg, &sd);
				}

				if(is_zero(throughput))
					return true;

				/* move ray forward */
				ray->P = ray_offset(sd.P, -sd.Ng);
				if(ray->t != FLT_MAX)
					ray->D = normalize_len(Pend - ray->P, &ray->t);

#ifdef __VOLUME__
				/* exit/enter volume */
				kernel_volume_stack_enter_exit(kg, &sd, ps.volume_stack);
#endif

				bounce++;
			}
		}
	}
#ifdef __VOLUME__
	else if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
		/* apply attenuation from current volume shader */
		kernel_volume_shadow(kg, state, ray, shadow);
	}
#endif
#endif

	return blocked;
}

#endif

CCL_NAMESPACE_END