Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_subsurface.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8dc1904058de066281e0c0c7f2c5f188ef7aa840 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* BSSRDF using disk based importance sampling.
 *
 * BSSRDF Importance Sampling, SIGGRAPH 2013
 * http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
 */

ccl_device_inline float3
subsurface_scatter_eval(ShaderData *sd, const ShaderClosure *sc, float disk_r, float r, bool all)
{
  /* this is the veach one-sample model with balance heuristic, some pdf
   * factors drop out when using balance heuristic weighting */
  float3 eval_sum = make_float3(0.0f, 0.0f, 0.0f);
  float pdf_sum = 0.0f;
  float sample_weight_inv = 0.0f;

  if (!all) {
    float sample_weight_sum = 0.0f;

    for (int i = 0; i < sd->num_closure; i++) {
      sc = &sd->closure[i];

      if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
        sample_weight_sum += sc->sample_weight;
      }
    }

    sample_weight_inv = 1.0f / sample_weight_sum;
  }

  for (int i = 0; i < sd->num_closure; i++) {
    sc = &sd->closure[i];

    if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
      /* in case of branched path integrate we sample all bssrdf's once,
       * for path trace we pick one, so adjust pdf for that */
      float sample_weight = (all) ? 1.0f : sc->sample_weight * sample_weight_inv;

      /* compute pdf */
      float3 eval = bssrdf_eval(sc, r);
      float pdf = bssrdf_pdf(sc, disk_r);

      eval_sum += sc->weight * eval;
      pdf_sum += sample_weight * pdf;
    }
  }

  return (pdf_sum > 0.0f) ? eval_sum / pdf_sum : make_float3(0.0f, 0.0f, 0.0f);
}

/* replace closures with a single diffuse bsdf closure after scatter step */
ccl_device void subsurface_scatter_setup_diffuse_bsdf(
    KernelGlobals *kg, ShaderData *sd, ClosureType type, float roughness, float3 weight, float3 N)
{
  sd->flag &= ~SD_CLOSURE_FLAGS;
  sd->num_closure = 0;
  sd->num_closure_left = kernel_data.integrator.max_closures;

#ifdef __PRINCIPLED__
  if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
    PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
        sd, sizeof(PrincipledDiffuseBsdf), weight);

    if (bsdf) {
      bsdf->N = N;
      bsdf->roughness = roughness;
      sd->flag |= bsdf_principled_diffuse_setup(bsdf);

      /* replace CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID with this special ID so render passes
       * can recognize it as not being a regular Disney principled diffuse closure */
      bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
    }
  }
  else if (CLOSURE_IS_BSDF_BSSRDF(type) || CLOSURE_IS_BSSRDF(type))
#endif /* __PRINCIPLED__ */
  {
    DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);

    if (bsdf) {
      bsdf->N = N;
      sd->flag |= bsdf_diffuse_setup(bsdf);

      /* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
       * can recognize it as not being a regular diffuse closure */
      bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
    }
  }
}

/* optionally do blurring of color and/or bump mapping, at the cost of a shader evaluation */
ccl_device float3 subsurface_color_pow(float3 color, float exponent)
{
  color = max(color, make_float3(0.0f, 0.0f, 0.0f));

  if (exponent == 1.0f) {
    /* nothing to do */
  }
  else if (exponent == 0.5f) {
    color.x = sqrtf(color.x);
    color.y = sqrtf(color.y);
    color.z = sqrtf(color.z);
  }
  else {
    color.x = powf(color.x, exponent);
    color.y = powf(color.y, exponent);
    color.z = powf(color.z, exponent);
  }

  return color;
}

ccl_device void subsurface_color_bump_blur(
    KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, float3 *eval, float3 *N)
{
  /* average color and texture blur at outgoing point */
  float texture_blur;
  float3 out_color = shader_bssrdf_sum(sd, NULL, &texture_blur);

  /* do we have bump mapping? */
  bool bump = (sd->flag & SD_HAS_BSSRDF_BUMP) != 0;

  if (bump || texture_blur > 0.0f) {
    /* average color and normal at incoming point */
    shader_eval_surface(kg, sd, state, state->flag);
    float3 in_color = shader_bssrdf_sum(sd, (bump) ? N : NULL, NULL);

    /* we simply divide out the average color and multiply with the average
     * of the other one. we could try to do this per closure but it's quite
     * tricky to match closures between shader evaluations, their number and
     * order may change, this is simpler */
    if (texture_blur > 0.0f) {
      out_color = subsurface_color_pow(out_color, texture_blur);
      in_color = subsurface_color_pow(in_color, texture_blur);

      *eval *= safe_divide_color(in_color, out_color);
    }
  }
}

/* Subsurface scattering step, from a point on the surface to other
 * nearby points on the same object.
 */
ccl_device_inline int subsurface_scatter_disk(KernelGlobals *kg,
                                              LocalIntersection *ss_isect,
                                              ShaderData *sd,
                                              const ShaderClosure *sc,
                                              uint *lcg_state,
                                              float disk_u,
                                              float disk_v,
                                              bool all)
{
  /* pick random axis in local frame and point on disk */
  float3 disk_N, disk_T, disk_B;
  float pick_pdf_N, pick_pdf_T, pick_pdf_B;

  disk_N = sd->Ng;
  make_orthonormals(disk_N, &disk_T, &disk_B);

  if (disk_v < 0.5f) {
    pick_pdf_N = 0.5f;
    pick_pdf_T = 0.25f;
    pick_pdf_B = 0.25f;
    disk_v *= 2.0f;
  }
  else if (disk_v < 0.75f) {
    float3 tmp = disk_N;
    disk_N = disk_T;
    disk_T = tmp;
    pick_pdf_N = 0.25f;
    pick_pdf_T = 0.5f;
    pick_pdf_B = 0.25f;
    disk_v = (disk_v - 0.5f) * 4.0f;
  }
  else {
    float3 tmp = disk_N;
    disk_N = disk_B;
    disk_B = tmp;
    pick_pdf_N = 0.25f;
    pick_pdf_T = 0.25f;
    pick_pdf_B = 0.5f;
    disk_v = (disk_v - 0.75f) * 4.0f;
  }

  /* sample point on disk */
  float phi = M_2PI_F * disk_v;
  float disk_height, disk_r;

  bssrdf_sample(sc, disk_u, &disk_r, &disk_height);

  float3 disk_P = (disk_r * cosf(phi)) * disk_T + (disk_r * sinf(phi)) * disk_B;

  /* create ray */
#ifdef __SPLIT_KERNEL__
  Ray ray_object = ss_isect->ray;
  Ray *ray = &ray_object;
#else
  Ray *ray = &ss_isect->ray;
#endif
  ray->P = sd->P + disk_N * disk_height + disk_P;
  ray->D = -disk_N;
  ray->t = 2.0f * disk_height;
  ray->dP = sd->dP;
  ray->dD = differential3_zero();
  ray->time = sd->time;

  /* intersect with the same object. if multiple intersections are found it
   * will use at most BSSRDF_MAX_HITS hits, a random subset of all hits */
  scene_intersect_local(kg, ray, ss_isect, sd->object, lcg_state, BSSRDF_MAX_HITS);
  int num_eval_hits = min(ss_isect->num_hits, BSSRDF_MAX_HITS);

  for (int hit = 0; hit < num_eval_hits; hit++) {
    /* Quickly retrieve P and Ng without setting up ShaderData. */
    float3 hit_P;
    if (sd->type & PRIMITIVE_TRIANGLE) {
      hit_P = triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray);
    }
#ifdef __OBJECT_MOTION__
    else if (sd->type & PRIMITIVE_MOTION_TRIANGLE) {
      float3 verts[3];
      motion_triangle_vertices(kg,
                               sd->object,
                               kernel_tex_fetch(__prim_index, ss_isect->hits[hit].prim),
                               sd->time,
                               verts);
      hit_P = motion_triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray, verts);
    }
#endif /* __OBJECT_MOTION__ */
    else {
      ss_isect->weight[hit] = make_float3(0.0f, 0.0f, 0.0f);
      continue;
    }

    float3 hit_Ng = ss_isect->Ng[hit];
    if (ss_isect->hits[hit].object != OBJECT_NONE) {
      object_normal_transform(kg, sd, &hit_Ng);
    }

    /* Probability densities for local frame axes. */
    float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
    float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
    float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));

    /* Multiple importance sample between 3 axes, power heuristic
     * found to be slightly better than balance heuristic. pdf_N
     * in the MIS weight and denominator cancelled out. */
    float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
    if (ss_isect->num_hits > BSSRDF_MAX_HITS) {
      w *= ss_isect->num_hits / (float)BSSRDF_MAX_HITS;
    }

    /* Real distance to sampled point. */
    float r = len(hit_P - sd->P);

    /* Evaluate profiles. */
    float3 eval = subsurface_scatter_eval(sd, sc, disk_r, r, all) * w;

    ss_isect->weight[hit] = eval;
  }

#ifdef __SPLIT_KERNEL__
  ss_isect->ray = *ray;
#endif

  return num_eval_hits;
}

ccl_device_noinline void subsurface_scatter_multi_setup(KernelGlobals *kg,
                                                        LocalIntersection *ss_isect,
                                                        int hit,
                                                        ShaderData *sd,
                                                        ccl_addr_space PathState *state,
                                                        ClosureType type,
                                                        float roughness)
{
#ifdef __SPLIT_KERNEL__
  Ray ray_object = ss_isect->ray;
  Ray *ray = &ray_object;
#else
  Ray *ray = &ss_isect->ray;
#endif

  /* Workaround for AMD GPU OpenCL compiler. Most probably cache bypass issue. */
#if defined(__SPLIT_KERNEL__) && defined(__KERNEL_OPENCL_AMD__) && defined(__KERNEL_GPU__)
  kernel_split_params.dummy_sd_flag = sd->flag;
#endif

  /* Setup new shading point. */
  shader_setup_from_subsurface(kg, sd, &ss_isect->hits[hit], ray);

  /* Optionally blur colors and bump mapping. */
  float3 weight = ss_isect->weight[hit];
  float3 N = sd->N;
  subsurface_color_bump_blur(kg, sd, state, &weight, &N);

  /* Setup diffuse BSDF. */
  subsurface_scatter_setup_diffuse_bsdf(kg, sd, type, roughness, weight, N);
}

/* Random walk subsurface scattering.
 *
 * "Practical and Controllable Subsurface Scattering for Production Path
 *  Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */

ccl_device void subsurface_random_walk_remap(const float A,
                                             const float d,
                                             float *sigma_t,
                                             float *sigma_s)
{
  /* Compute attenuation and scattering coefficients from albedo. */
  const float a = 1.0f - expf(A * (-5.09406f + A * (2.61188f - A * 4.31805f)));
  const float s = 1.9f - A + 3.5f * sqr(A - 0.8f);

  *sigma_t = 1.0f / fmaxf(d * s, 1e-16f);
  *sigma_s = *sigma_t * a;
}

ccl_device void subsurface_random_walk_coefficients(const ShaderClosure *sc,
                                                    float3 *sigma_t,
                                                    float3 *sigma_s,
                                                    float3 *weight)
{
  const Bssrdf *bssrdf = (const Bssrdf *)sc;
  const float3 A = bssrdf->albedo;
  const float3 d = bssrdf->radius;
  float sigma_t_x, sigma_t_y, sigma_t_z;
  float sigma_s_x, sigma_s_y, sigma_s_z;

  subsurface_random_walk_remap(A.x, d.x, &sigma_t_x, &sigma_s_x);
  subsurface_random_walk_remap(A.y, d.y, &sigma_t_y, &sigma_s_y);
  subsurface_random_walk_remap(A.z, d.z, &sigma_t_z, &sigma_s_z);

  *sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
  *sigma_s = make_float3(sigma_s_x, sigma_s_y, sigma_s_z);

  /* Closure mixing and Fresnel weights separate from albedo. */
  *weight = safe_divide_color(bssrdf->weight, A);
}

ccl_device_noinline bool subsurface_random_walk(KernelGlobals *kg,
                                                LocalIntersection *ss_isect,
                                                ShaderData *sd,
                                                ccl_addr_space PathState *state,
                                                const ShaderClosure *sc,
                                                const float bssrdf_u,
                                                const float bssrdf_v)
{
  /* Sample diffuse surface scatter into the object. */
  float3 D;
  float pdf;
  sample_cos_hemisphere(-sd->N, bssrdf_u, bssrdf_v, &D, &pdf);
  if (dot(-sd->Ng, D) <= 0.0f) {
    return 0;
  }

  /* Convert subsurface to volume coefficients. */
  float3 sigma_t, sigma_s;
  float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
  subsurface_random_walk_coefficients(sc, &sigma_t, &sigma_s, &throughput);

  /* Setup ray. */
#ifdef __SPLIT_KERNEL__
  Ray ray_object = ss_isect->ray;
  Ray *ray = &ray_object;
#else
  Ray *ray = &ss_isect->ray;
#endif
  ray->P = ray_offset(sd->P, -sd->Ng);
  ray->D = D;
  ray->t = FLT_MAX;
  ray->time = sd->time;

  /* Modify state for RNGs, decorrelated from other paths. */
  uint prev_rng_offset = state->rng_offset;
  uint prev_rng_hash = state->rng_hash;
  state->rng_hash = cmj_hash(state->rng_hash + state->rng_offset, 0xdeadbeef);

  /* Random walk until we hit the surface again. */
  bool hit = false;

  for (int bounce = 0; bounce < BSSRDF_MAX_BOUNCES; bounce++) {
    /* Advance random number offset. */
    state->rng_offset += PRNG_BOUNCE_NUM;

    if (bounce > 0) {
      /* Sample scattering direction. */
      const float anisotropy = 0.0f;
      float scatter_u, scatter_v;
      path_state_rng_2D(kg, state, PRNG_BSDF_U, &scatter_u, &scatter_v);
      ray->D = henyey_greenstrein_sample(ray->D, anisotropy, scatter_u, scatter_v, NULL);
    }

    /* Sample color channel, use MIS with balance heuristic. */
    float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
    float3 albedo = safe_divide_color(sigma_s, sigma_t);
    float3 channel_pdf;
    int channel = kernel_volume_sample_channel(albedo, throughput, rphase, &channel_pdf);

    /* Distance sampling. */
    float rdist = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
    float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
    float t = -logf(1.0f - rdist) / sample_sigma_t;

    ray->t = t;
    scene_intersect_local(kg, ray, ss_isect, sd->object, NULL, 1);
    hit = (ss_isect->num_hits > 0);

    if (hit) {
      /* Compute world space distance to surface hit. */
      float3 D = ray->D;
      object_inverse_dir_transform(kg, sd, &D);
      D = normalize(D) * ss_isect->hits[0].t;
      object_dir_transform(kg, sd, &D);
      t = len(D);
    }

    /* Advance to new scatter location. */
    ray->P += t * ray->D;

    /* Update throughput. */
    float3 transmittance = volume_color_transmittance(sigma_t, t);
    float pdf = dot(channel_pdf, (hit) ? transmittance : sigma_t * transmittance);
    throughput *= ((hit) ? transmittance : sigma_s * transmittance) / pdf;

    if (hit) {
      /* If we hit the surface, we are done. */
      break;
    }

    /* Russian roulette. */
    float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
    float probability = min(max3(fabs(throughput)), 1.0f);
    if (terminate >= probability) {
      break;
    }
    throughput /= probability;
  }

  kernel_assert(isfinite_safe(throughput.x) && isfinite_safe(throughput.y) &&
                isfinite_safe(throughput.z));

  state->rng_offset = prev_rng_offset;
  state->rng_hash = prev_rng_hash;

  /* Return number of hits in ss_isect. */
  if (!hit) {
    return 0;
  }

  /* TODO: gain back performance lost from merging with disk BSSRDF. We
   * only need to return on hit so this indirect ray push/pop overhead
   * is not actually needed, but it does keep the code simpler. */
  ss_isect->weight[0] = throughput;
#ifdef __SPLIT_KERNEL__
  ss_isect->ray = *ray;
#endif

  return 1;
}

ccl_device_inline int subsurface_scatter_multi_intersect(KernelGlobals *kg,
                                                         LocalIntersection *ss_isect,
                                                         ShaderData *sd,
                                                         ccl_addr_space PathState *state,
                                                         const ShaderClosure *sc,
                                                         uint *lcg_state,
                                                         float bssrdf_u,
                                                         float bssrdf_v,
                                                         bool all)
{
  if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
    return subsurface_scatter_disk(kg, ss_isect, sd, sc, lcg_state, bssrdf_u, bssrdf_v, all);
  }
  else {
    return subsurface_random_walk(kg, ss_isect, sd, state, sc, bssrdf_u, bssrdf_v);
  }
}

CCL_NAMESPACE_END