Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_opencl_image.h « opencl « kernels « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d908af78c7a3637936b382428c7311d030963036 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*
 * Copyright 2016 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* For OpenCL we do manual lookup and interpolation. */

ccl_device_inline ccl_global TextureInfo* kernel_tex_info(KernelGlobals *kg, uint id) {
	const uint tex_offset = id
#define KERNEL_TEX(type, name) + 1
#include "kernel/kernel_textures.h"
	;

	return &((ccl_global TextureInfo*)kg->buffers[0])[tex_offset];
}

#define tex_fetch(type, info, index) ((ccl_global type*)(kg->buffers[info->cl_buffer] + info->data))[(index)]

ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int id, int offset)
{
	const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
	const int texture_type = kernel_tex_type(id);

	/* Float4 */
	if(texture_type == IMAGE_DATA_TYPE_FLOAT4) {
		return tex_fetch(float4, info, offset);
	}
	/* Byte4 */
	else if(texture_type == IMAGE_DATA_TYPE_BYTE4) {
		uchar4 r = tex_fetch(uchar4, info, offset);
		float f = 1.0f/255.0f;
		return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
	}
	/* Float */
	else if(texture_type == IMAGE_DATA_TYPE_FLOAT) {
		float f = tex_fetch(float, info, offset);
		return make_float4(f, f, f, 1.0f);
	}
	/* Byte */
	else {
		uchar r = tex_fetch(uchar, info, offset);
		float f = r * (1.0f/255.0f);
		return make_float4(f, f, f, 1.0f);
	}
}

ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
{
	x %= width;
	if(x < 0)
		x += width;
	return x;
}

ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
{
	return clamp(x, 0, width-1);
}

ccl_device_inline float svm_image_texture_frac(float x, int *ix)
{
	int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
	*ix = i;
	return x - (float)i;
}

#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
	{ \
		u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
		u[1] =  ((      0.5f * t - 1.0f) * t       ) * t + (2.0f/3.0f); \
		u[2] =  ((     -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
		u[3] = (1.0f / 6.0f) * t * t * t; \
	} (void)0

ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
	const ccl_global TextureInfo *info = kernel_tex_info(kg, id);

	uint width = info->width;
	uint height = info->height;
	uint interpolation = info->interpolation;
	uint extension = info->extension;

	/* Actual sampling. */
	if(interpolation == INTERPOLATION_CLOSEST) {
		int ix, iy;
		svm_image_texture_frac(x*width, &ix);
		svm_image_texture_frac(y*height, &iy);

		if(extension == EXTENSION_REPEAT) {
			ix = svm_image_texture_wrap_periodic(ix, width);
			iy = svm_image_texture_wrap_periodic(iy, height);
		}
		else {
			if(extension == EXTENSION_CLIP) {
				if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
					return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
				}
			}
			/* Fall through. */
			/* EXTENSION_EXTEND */
			ix = svm_image_texture_wrap_clamp(ix, width);
			iy = svm_image_texture_wrap_clamp(iy, height);
		}

		return svm_image_texture_read(kg, id, ix + iy*width);
	}
	else {
		/* Bilinear or bicubic interpolation. */
		int ix, iy, nix, niy;
		float tx = svm_image_texture_frac(x*width - 0.5f, &ix);
		float ty = svm_image_texture_frac(y*height - 0.5f, &iy);

		if(extension == EXTENSION_REPEAT) {
			ix = svm_image_texture_wrap_periodic(ix, width);
			iy = svm_image_texture_wrap_periodic(iy, height);
			nix = svm_image_texture_wrap_periodic(ix+1, width);
			niy = svm_image_texture_wrap_periodic(iy+1, height);
		}
		else {
			if(extension == EXTENSION_CLIP) {
				if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
					return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
				}
			}
			ix = svm_image_texture_wrap_clamp(ix, width);
			iy = svm_image_texture_wrap_clamp(iy, height);
			nix = svm_image_texture_wrap_clamp(ix+1, width);
			niy = svm_image_texture_wrap_clamp(iy+1, height);
		}

		if(interpolation == INTERPOLATION_LINEAR) {
			/* Bilinear interpolation. */
			float4 r;
			r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width);
			r += (1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width);
			r += ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width);
			r += ty*tx*svm_image_texture_read(kg, id, nix + niy*width);
			return r;
		}

		/* Bicubic interpolation. */
		int pix, piy, nnix, nniy;
		if(extension == EXTENSION_REPEAT) {
			pix = svm_image_texture_wrap_periodic(ix-1, width);
			piy = svm_image_texture_wrap_periodic(iy-1, height);
			nnix = svm_image_texture_wrap_periodic(ix+2, width);
			nniy = svm_image_texture_wrap_periodic(iy+2, height);
		}
		else {
			pix = svm_image_texture_wrap_clamp(ix-1, width);
			piy = svm_image_texture_wrap_clamp(iy-1, height);
			nnix = svm_image_texture_wrap_clamp(ix+2, width);
			nniy = svm_image_texture_wrap_clamp(iy+2, height);
		}

		const int xc[4] = {pix, ix, nix, nnix};
		const int yc[4] = {width * piy,
		                   width * iy,
		                   width * niy,
		                   width * nniy};
		float u[4], v[4];
		/* Some helper macro to keep code reasonable size,
		 * let compiler to inline all the matrix multiplications.
		 */
#define DATA(x, y) (svm_image_texture_read(kg, id, xc[x] + yc[y]))
#define TERM(col) \
		(v[col] * (u[0] * DATA(0, col) + \
		           u[1] * DATA(1, col) + \
		           u[2] * DATA(2, col) + \
		           u[3] * DATA(3, col)))

		SET_CUBIC_SPLINE_WEIGHTS(u, tx);
		SET_CUBIC_SPLINE_WEIGHTS(v, ty);

		/* Actual interpolation. */
		return TERM(0) + TERM(1) + TERM(2) + TERM(3);
#undef TERM
#undef DATA
	}
}


ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z, int interp)
{
	const ccl_global TextureInfo *info = kernel_tex_info(kg, id);

	uint width = info->width;
	uint height = info->height;
	uint depth = info->depth;
	uint interpolation = (interp == INTERPOLATION_NONE)? info->interpolation: interp;
	uint extension = info->extension;

	/* Actual sampling. */
	if(interpolation == INTERPOLATION_CLOSEST) {
		int ix, iy, iz;
		svm_image_texture_frac(x*width, &ix);
		svm_image_texture_frac(y*height, &iy);
		svm_image_texture_frac(z*depth, &iz);

		if(extension == EXTENSION_REPEAT) {
			ix = svm_image_texture_wrap_periodic(ix, width);
			iy = svm_image_texture_wrap_periodic(iy, height);
			iz = svm_image_texture_wrap_periodic(iz, depth);
		}
		else {
			if(extension == EXTENSION_CLIP) {
				if(x < 0.0f || y < 0.0f || z < 0.0f ||
				   x > 1.0f || y > 1.0f || z > 1.0f)
				{
					return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
				}
			}
			/* Fall through. */
			/* EXTENSION_EXTEND */
			ix = svm_image_texture_wrap_clamp(ix, width);
			iy = svm_image_texture_wrap_clamp(iy, height);
			iz = svm_image_texture_wrap_clamp(iz, depth);
		}
		return svm_image_texture_read(kg, id, ix + iy*width + iz*width*height);
	}
	else {
		/* Bilinear or bicubic interpolation. */
		int ix, iy, iz, nix, niy, niz;
		float tx = svm_image_texture_frac(x*(float)width - 0.5f, &ix);
		float ty = svm_image_texture_frac(y*(float)height - 0.5f, &iy);
		float tz = svm_image_texture_frac(z*(float)depth - 0.5f, &iz);

		if(extension == EXTENSION_REPEAT) {
			ix = svm_image_texture_wrap_periodic(ix, width);
			iy = svm_image_texture_wrap_periodic(iy, height);
			iz = svm_image_texture_wrap_periodic(iz, depth);

			nix = svm_image_texture_wrap_periodic(ix+1, width);
			niy = svm_image_texture_wrap_periodic(iy+1, height);
			niz = svm_image_texture_wrap_periodic(iz+1, depth);
		}
		else {
			if(extension == EXTENSION_CLIP) {
				if(x < 0.0f || y < 0.0f || z < 0.0f ||
				   x > 1.0f || y > 1.0f || z > 1.0f)
				{
					return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
				}
			}
			/* Fall through. */
			/*  EXTENSION_EXTEND */
			nix = svm_image_texture_wrap_clamp(ix+1, width);
			niy = svm_image_texture_wrap_clamp(iy+1, height);
			niz = svm_image_texture_wrap_clamp(iz+1, depth);

			ix = svm_image_texture_wrap_clamp(ix, width);
			iy = svm_image_texture_wrap_clamp(iy, height);
			iz = svm_image_texture_wrap_clamp(iz, depth);
		}

		if(interpolation == INTERPOLATION_LINEAR) {
			/* Bilinear interpolation. */
			float4 r;
			r  = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width + iz*width*height);
			r += (1.0f - tz)*(1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width + iz*width*height);
			r += (1.0f - tz)*ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width + iz*width*height);
			r += (1.0f - tz)*ty*tx*svm_image_texture_read(kg, id, nix + niy*width + iz*width*height);

			r += tz*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width + niz*width*height);
			r += tz*(1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width + niz*width*height);
			r += tz*ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width + niz*width*height);
			r += tz*ty*tx*svm_image_texture_read(kg, id, nix + niy*width + niz*width*height);
			return r;
		}

		/* Bicubic interpolation. */
		int pix, piy, piz, nnix, nniy, nniz;
		if(extension == EXTENSION_REPEAT) {
			pix = svm_image_texture_wrap_periodic(ix-1, width);
			piy = svm_image_texture_wrap_periodic(iy-1, height);
			piz = svm_image_texture_wrap_periodic(iz-1, depth);
			nnix = svm_image_texture_wrap_periodic(ix+2, width);
			nniy = svm_image_texture_wrap_periodic(iy+2, height);
			nniz = svm_image_texture_wrap_periodic(iz+2, depth);
		}
		else {
			pix = svm_image_texture_wrap_clamp(ix-1, width);
			piy = svm_image_texture_wrap_clamp(iy-1, height);
			piz = svm_image_texture_wrap_clamp(iz-1, depth);
			nnix = svm_image_texture_wrap_clamp(ix+2, width);
			nniy = svm_image_texture_wrap_clamp(iy+2, height);
			nniz = svm_image_texture_wrap_clamp(iz+2, depth);
		}

		const int xc[4] = {pix, ix, nix, nnix};
		const int yc[4] = {width * piy,
		                   width * iy,
		                   width * niy,
		                   width * nniy};
		const int zc[4] = {width * height * piz,
		                   width * height * iz,
		                   width * height * niz,
		                   width * height * nniz};
		float u[4], v[4], w[4];

		/* Some helper macro to keep code reasonable size,
		 * let compiler to inline all the matrix multiplications.
		 */
#define DATA(x, y, z) (svm_image_texture_read(kg, id, xc[x] + yc[y] + zc[z]))
#define COL_TERM(col, row) \
		(v[col] * (u[0] * DATA(0, col, row) + \
		           u[1] * DATA(1, col, row) + \
		           u[2] * DATA(2, col, row) + \
		           u[3] * DATA(3, col, row)))
#define ROW_TERM(row) \
		(w[row] * (COL_TERM(0, row) + \
		           COL_TERM(1, row) + \
		           COL_TERM(2, row) + \
		           COL_TERM(3, row)))

		SET_CUBIC_SPLINE_WEIGHTS(u, tx);
		SET_CUBIC_SPLINE_WEIGHTS(v, ty);
		SET_CUBIC_SPLINE_WEIGHTS(w, tz);

		/* Actual interpolation. */
		return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);

#undef COL_TERM
#undef ROW_TERM
#undef DATA
	}
}

#undef SET_CUBIC_SPLINE_WEIGHTS