Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_holdout_emission_blurring_pathtermination_ao.h « split « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9fc853a84bf9de1fbc55c218843d93cf42f8ab1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
 * Copyright 2011-2015 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* This kernel takes care of the logic to process "material of type holdout",
 * indirect primitive emission, bsdf blurring, probabilistic path termination
 * and AO.
 *
 * This kernels determines the rays for which a shadow_blocked() function
 * associated with AO should be executed. Those rays for which a
 * shadow_blocked() function for AO must be executed are marked with flag
 * RAY_SHADOW_RAY_CAST_ao and enqueued into the queue
 * QUEUE_SHADOW_RAY_CAST_AO_RAYS
 *
 * Ray state of rays that are terminated in this kernel are changed to RAY_UPDATE_BUFFER
 *
 * Note on Queues:
 * This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS
 * and processes only the rays of state RAY_ACTIVE.
 * There are different points in this kernel where a ray may terminate and
 * reach RAY_UPDATE_BUFFER state. These rays are enqueued into
 * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will still be present
 * in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has
 * been changed to RAY_UPDATE_BUFFER, there is no problem.
 *
 * State of queues when this kernel is called:
 * At entry,
 *   - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and
 *     RAY_REGENERATED rays
 *   - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
 *     RAY_TO_REGENERATE rays.
 *   - QUEUE_SHADOW_RAY_CAST_AO_RAYS will be empty.
 * At exit,
 *   - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
 *     RAY_REGENERATED and RAY_UPDATE_BUFFER rays.
 *   - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
 *     RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
 *   - QUEUE_SHADOW_RAY_CAST_AO_RAYS will be filled with rays marked with
 *     flag RAY_SHADOW_RAY_CAST_AO
 */
ccl_device void kernel_holdout_emission_blurring_pathtermination_ao(
        KernelGlobals *kg,
        ccl_local_param BackgroundAOLocals *locals)
{
	if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
		locals->queue_atomics_bg = 0;
		locals->queue_atomics_ao = 0;
	}
	ccl_barrier(CCL_LOCAL_MEM_FENCE);

	char enqueue_flag = 0;
	char enqueue_flag_AO_SHADOW_RAY_CAST = 0;
	int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
	ray_index = get_ray_index(kg, ray_index,
	                          QUEUE_ACTIVE_AND_REGENERATED_RAYS,
	                          kernel_split_state.queue_data,
	                          kernel_split_params.queue_size,
	                          0);

#ifdef __COMPUTE_DEVICE_GPU__
	/* If we are executing on a GPU device, we exit all threads that are not
	 * required.
	 *
	 * If we are executing on a CPU device, then we need to keep all threads
	 * active since we have barrier() calls later in the kernel. CPU devices,
	 * expect all threads to execute barrier statement.
	 */
	if(ray_index == QUEUE_EMPTY_SLOT) {
		return;
	}
#endif  /* __COMPUTE_DEVICE_GPU__ */

#ifndef __COMPUTE_DEVICE_GPU__
	if(ray_index != QUEUE_EMPTY_SLOT) {
#endif

	int stride = kernel_split_params.stride;

	unsigned int work_index;
	unsigned int pixel_x;
	unsigned int pixel_y;

	unsigned int tile_x;
	unsigned int tile_y;
	unsigned int sample;

	RNG rng = kernel_split_state.rng[ray_index];
	ccl_global PathState *state = 0x0;
	float3 throughput;

	ccl_global char *ray_state = kernel_split_state.ray_state;
	ShaderData *sd = &kernel_split_state.sd[ray_index];
	ccl_global float *buffer = kernel_split_params.buffer;

	if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {

		throughput = kernel_split_state.throughput[ray_index];
		state = &kernel_split_state.path_state[ray_index];

		work_index = kernel_split_state.work_array[ray_index];
		sample = get_work_sample(kg, work_index, ray_index) + kernel_split_params.start_sample;
		get_work_pixel_tile_position(kg, &pixel_x, &pixel_y,
		                        &tile_x, &tile_y,
		                        work_index,
		                        ray_index);

		buffer += (kernel_split_params.offset + pixel_x + pixel_y * stride) * kernel_data.film.pass_stride;

#ifdef __SHADOW_TRICKS__
		if((sd->object_flag & SD_OBJECT_SHADOW_CATCHER)) {
			if (state->flag & PATH_RAY_CAMERA) {
				state->flag |= (PATH_RAY_SHADOW_CATCHER | PATH_RAY_SHADOW_CATCHER_ONLY);
				state->catcher_object = sd->object;
				if(!kernel_data.background.transparent) {
					PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
					ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
					L->shadow_color = indirect_background(kg, &kernel_split_state.sd_DL_shadow[ray_index], state, ray);
				}
			}
		}
		else {
			state->flag &= ~PATH_RAY_SHADOW_CATCHER_ONLY;
		}
#endif  /* __SHADOW_TRICKS__ */

		/* holdout */
#ifdef __HOLDOUT__
		if(((sd->flag & SD_HOLDOUT) ||
		    (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
		   (state->flag & PATH_RAY_CAMERA))
		{
			if(kernel_data.background.transparent) {
				float3 holdout_weight;
				if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
					holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
				}
				else {
					holdout_weight = shader_holdout_eval(kg, sd);
				}
				/* any throughput is ok, should all be identical here */
				kernel_split_state.L_transparent[ray_index] += average(holdout_weight*throughput);
			}
			if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
				ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
				enqueue_flag = 1;
			}
		}
#endif  /* __HOLDOUT__ */
	}

	if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
		PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
		/* Holdout mask objects do not write data passes. */
		kernel_write_data_passes(kg,
		                         buffer,
		                         L,
		                         sd,
		                         sample,
		                         state,
		                         throughput);
		/* Blurring of bsdf after bounces, for rays that have a small likelihood
		 * of following this particular path (diffuse, rough glossy.
		 */
		if(kernel_data.integrator.filter_glossy != FLT_MAX) {
			float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
			if(blur_pdf < 1.0f) {
				float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
				shader_bsdf_blur(kg, sd, blur_roughness);
			}
		}

#ifdef __EMISSION__
		/* emission */
		if(sd->flag & SD_EMISSION) {
			/* TODO(sergey): is isect.t wrong here for transparent surfaces? */
			float3 emission = indirect_primitive_emission(
			        kg,
			        sd,
			        kernel_split_state.isect[ray_index].t,
			        state->flag,
			        state->ray_pdf);
			path_radiance_accum_emission(L, throughput, emission, state->bounce);
		}
#endif  /* __EMISSION__ */

		/* Path termination. this is a strange place to put the termination, it's
		 * mainly due to the mixed in MIS that we use. gives too many unneeded
		 * shader evaluations, only need emission if we are going to terminate.
		 */
		float probability = path_state_terminate_probability(kg, state, throughput);

		if(probability == 0.0f) {
			ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
			enqueue_flag = 1;
		}

		if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
			if(probability != 1.0f) {
				float terminate = path_state_rng_1D_for_decision(kg, &rng, state, PRNG_TERMINATE);
				if(terminate >= probability) {
					ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
					enqueue_flag = 1;
				}
				else {
					kernel_split_state.throughput[ray_index] = throughput/probability;
				}
			}
		}
	}

#ifdef __AO__
	if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
		/* ambient occlusion */
		if(kernel_data.integrator.use_ambient_occlusion ||
		   (sd->flag & SD_AO))
		{
			/* todo: solve correlation */
			float bsdf_u, bsdf_v;
			path_state_rng_2D(kg, &rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);

			float ao_factor = kernel_data.background.ao_factor;
			float3 ao_N;
			kernel_split_state.ao_bsdf[ray_index] = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
			kernel_split_state.ao_alpha[ray_index] = shader_bsdf_alpha(kg, sd);

			float3 ao_D;
			float ao_pdf;
			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);

			if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
				Ray _ray;
				_ray.P = ray_offset(sd->P, sd->Ng);
				_ray.D = ao_D;
				_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
				_ray.time = sd->time;
#endif
				_ray.dP = sd->dP;
				_ray.dD = differential3_zero();
				kernel_split_state.ao_light_ray[ray_index] = _ray;

				ADD_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO);
				enqueue_flag_AO_SHADOW_RAY_CAST = 1;
			}
		}
	}
#endif  /* __AO__ */
	kernel_split_state.rng[ray_index] = rng;


#ifndef __COMPUTE_DEVICE_GPU__
	}
#endif

	/* Enqueue RAY_UPDATE_BUFFER rays. */
	enqueue_ray_index_local(ray_index,
	                        QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
	                        enqueue_flag,
	                        kernel_split_params.queue_size,
	                        &locals->queue_atomics_bg,
	                        kernel_split_state.queue_data,
	                        kernel_split_params.queue_index);

#ifdef __AO__
	/* Enqueue to-shadow-ray-cast rays. */
	enqueue_ray_index_local(ray_index,
	                        QUEUE_SHADOW_RAY_CAST_AO_RAYS,
	                        enqueue_flag_AO_SHADOW_RAY_CAST,
	                        kernel_split_params.queue_size,
	                        &locals->queue_atomics_ao,
	                        kernel_split_state.queue_data,
	                        kernel_split_params.queue_index);
#endif
}

CCL_NAMESPACE_END