Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_subsurface_scatter.h « split « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1dffe1b179e0e95a92ca4e9a72e6ab5b9766509a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
 * Copyright 2011-2017 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

#if defined(__BRANCHED_PATH__) && defined(__SUBSURFACE__)

ccl_device_inline void kernel_split_branched_path_subsurface_indirect_light_init(KernelGlobals *kg, int ray_index)
{
	kernel_split_branched_path_indirect_loop_init(kg, ray_index);

	SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];

	branched_state->ss_next_closure = 0;
	branched_state->ss_next_sample = 0;

	branched_state->num_hits = 0;
	branched_state->next_hit = 0;

	ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_SUBSURFACE_INDIRECT);
}

ccl_device_noinline bool kernel_split_branched_path_subsurface_indirect_light_iter(KernelGlobals *kg, int ray_index)
{
	SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];

	ShaderData *sd = &branched_state->sd;
	RNG rng = kernel_split_state.rng[ray_index];
	PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
	ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];

	for(int i = branched_state->ss_next_closure; i < sd->num_closure; i++) {
		ShaderClosure *sc = &sd->closure[i];

		if(!CLOSURE_IS_BSSRDF(sc->type))
			continue;

		/* set up random number generator */
		if(branched_state->ss_next_sample == 0 && branched_state->next_hit == 0 &&
		   branched_state->next_closure == 0 && branched_state->next_sample == 0)
		{
			branched_state->lcg_state = lcg_state_init(&rng,
			                                           branched_state->path_state.rng_offset,
			                                           branched_state->path_state.sample,
			                                           0x68bc21eb);
		}
		int num_samples = kernel_data.integrator.subsurface_samples;
		float num_samples_inv = 1.0f/num_samples;
		RNG bssrdf_rng = cmj_hash(rng, i);

		/* do subsurface scatter step with copy of shader data, this will
		 * replace the BSSRDF with a diffuse BSDF closure */
		for(int j = branched_state->ss_next_sample; j < num_samples; j++) {
			ccl_global SubsurfaceIntersection *ss_isect = &branched_state->ss_isect;
			float bssrdf_u, bssrdf_v;
			path_branched_rng_2D(kg,
			                     &bssrdf_rng,
			                     &branched_state->path_state,
			                     j,
			                     num_samples,
			                     PRNG_BSDF_U,
			                     &bssrdf_u,
			                     &bssrdf_v);

			/* intersection is expensive so avoid doing multiple times for the same input */
			if(branched_state->next_hit == 0 && branched_state->next_closure == 0 && branched_state->next_sample == 0) {
				RNG lcg_state = branched_state->lcg_state;
				SubsurfaceIntersection ss_isect_private;

				branched_state->num_hits = subsurface_scatter_multi_intersect(kg,
				                                                              &ss_isect_private,
				                                                              sd,
				                                                              sc,
				                                                              &lcg_state,
				                                                              bssrdf_u, bssrdf_v,
				                                                              true);

				branched_state->lcg_state = lcg_state;
				*ss_isect = ss_isect_private;
			}

#ifdef __VOLUME__
			Ray volume_ray = branched_state->ray;
			bool need_update_volume_stack =
			        kernel_data.integrator.use_volumes &&
			        sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
#endif  /* __VOLUME__ */

			/* compute lighting with the BSDF closure */
			for(int hit = branched_state->next_hit; hit < branched_state->num_hits; hit++) {
				ShaderData *bssrdf_sd = &kernel_split_state.sd[ray_index];
				*bssrdf_sd = *sd; /* note: copy happens each iteration of inner loop, this is
				                   * important as the indirect path will write into bssrdf_sd */

				SubsurfaceIntersection ss_isect_private = *ss_isect;
				subsurface_scatter_multi_setup(kg,
				                               &ss_isect_private,
				                               hit,
				                               bssrdf_sd,
				                               &branched_state->path_state,
				                               branched_state->path_state.flag,
				                               sc,
				                               true);
				*ss_isect = ss_isect_private;

				ccl_global PathState *hit_state = &kernel_split_state.path_state[ray_index];
				*hit_state = branched_state->path_state;

				path_state_branch(hit_state, j, num_samples);

#ifdef __VOLUME__
				if(need_update_volume_stack) {
					/* Setup ray from previous surface point to the new one. */
					float3 P = ray_offset(bssrdf_sd->P, -bssrdf_sd->Ng);
					volume_ray.D = normalize_len(P - volume_ray.P, &volume_ray.t);

					/* this next part is expensive as it does scene intersection so only do once */
					if(branched_state->next_closure == 0 && branched_state->next_sample == 0) {
						for(int k = 0; k < VOLUME_STACK_SIZE; k++) {
							branched_state->volume_stack[k] = hit_state->volume_stack[k];
						}

						kernel_volume_stack_update_for_subsurface(kg,
						                                          emission_sd,
						                                          &volume_ray,
						                                          branched_state->volume_stack);
					}

					for(int k = 0; k < VOLUME_STACK_SIZE; k++) {
						hit_state->volume_stack[k] = branched_state->volume_stack[k];
					}
				}
#endif  /* __VOLUME__ */

#ifdef __EMISSION__
				if(branched_state->next_closure == 0 && branched_state->next_sample == 0) {
					/* direct light */
					if(kernel_data.integrator.use_direct_light) {
						int all = (kernel_data.integrator.sample_all_lights_direct) ||
							      (branched_state->path_state.flag & PATH_RAY_SHADOW_CATCHER);
						kernel_branched_path_surface_connect_light(kg,
						                                           &rng,
						                                           bssrdf_sd,
						                                           emission_sd,
						                                           hit_state,
						                                           branched_state->throughput,
						                                           num_samples_inv,
						                                           L,
						                                           all);
					}
				}
#endif  /* __EMISSION__ */

				/* indirect light */
				if(kernel_split_branched_path_surface_indirect_light_iter(kg,
				                                                          ray_index,
				                                                          num_samples_inv,
				                                                          bssrdf_sd,
				                                                          false))
				{
					branched_state->ss_next_closure = i;
					branched_state->ss_next_sample = j;
					branched_state->next_hit = hit;

					return true;
				}

				branched_state->next_closure = 0;
			}

			branched_state->next_hit = 0;
		}

		branched_state->ss_next_sample = 0;
	}

	kernel_split_branched_path_indirect_loop_end(kg, ray_index);

	return false;
}

#endif  /* __BRANCHED_PATH__ && __SUBSURFACE__ */

ccl_device void kernel_subsurface_scatter(KernelGlobals *kg)
{
	int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
	if(thread_index == 0) {
		/* We will empty both queues in this kernel. */
		kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
		kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
	}

	int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
	ray_index = get_ray_index(kg, ray_index,
	                          QUEUE_ACTIVE_AND_REGENERATED_RAYS,
	                          kernel_split_state.queue_data,
	                          kernel_split_params.queue_size,
	                          1);
	get_ray_index(kg, thread_index,
	              QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
	              kernel_split_state.queue_data,
	              kernel_split_params.queue_size,
	              1);

#ifdef __SUBSURFACE__
	ccl_global char *ray_state = kernel_split_state.ray_state;

	if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
		ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
		PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
		RNG rng = kernel_split_state.rng[ray_index];
		ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
		ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
		ccl_global SubsurfaceIndirectRays *ss_indirect = &kernel_split_state.ss_rays[ray_index];
		ShaderData *sd = &kernel_split_state.sd[ray_index];
		ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];

		if(sd->flag & SD_BSSRDF) {

#ifdef __BRANCHED_PATH__
			if(!kernel_data.integrator.branched) {
#endif
				if(kernel_path_subsurface_scatter(kg,
				                                  sd,
				                                  emission_sd,
				                                  L,
				                                  state,
				                                  &rng,
				                                  ray,
				                                  throughput,
				                                  ss_indirect))
				{
					kernel_split_path_end(kg, ray_index);
				}
#ifdef __BRANCHED_PATH__
			}
			else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
				float bssrdf_probability;
				ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);

				/* modify throughput for picking bssrdf or bsdf */
				*throughput *= bssrdf_probability;

				/* do bssrdf scatter step if we picked a bssrdf closure */
				if(sc) {
					uint lcg_state = lcg_state_init(&rng, state->rng_offset, state->sample, 0x68bc21eb);

					float bssrdf_u, bssrdf_v;
					path_state_rng_2D(kg,
						              &rng,
						              state,
						              PRNG_BSDF_U,
						              &bssrdf_u, &bssrdf_v);
					subsurface_scatter_step(kg,
						                    sd,
						                    state,
						                    state->flag,
						                    sc,
						                    &lcg_state,
						                    bssrdf_u, bssrdf_v,
						                    false);
				}
			}
			else {
				kernel_split_branched_path_subsurface_indirect_light_init(kg, ray_index);

				if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
					ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
				}
			}
#endif
		}
		kernel_split_state.rng[ray_index] = rng;
	}

#  ifdef __BRANCHED_PATH__
	if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
		kernel_split_params.queue_index[QUEUE_SUBSURFACE_INDIRECT_ITER] = 0;
	}

	/* iter loop */
	ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
	                          QUEUE_SUBSURFACE_INDIRECT_ITER,
	                          kernel_split_state.queue_data,
	                          kernel_split_params.queue_size,
	                          1);

	if(IS_STATE(ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER)) {
		/* for render passes, sum and reset indirect light pass variables
		 * for the next samples */
		path_radiance_sum_indirect(&kernel_split_state.path_radiance[ray_index]);
		path_radiance_reset_indirect(&kernel_split_state.path_radiance[ray_index]);

		if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
			ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
		}
	}
#  endif  /* __BRANCHED_PATH__ */

#endif  /* __SUBSURFACE__ */

}

CCL_NAMESPACE_END