Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_oren_nayar.h « svm « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9eefdffe6ae8bd4a88e5d67d0fdc7204e4cbdc85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
 * Copyright 2011, Blender Foundation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/*
 *	An implementation of Oren-Nayar reflectance model, public domain
 *		http://www1.cs.columbia.edu/CAVE/publications/pdfs/Oren_SIGGRAPH94.pdf
 *
 *	NOTE:
 *		BSDF = A + B * cos() * sin() * tan()
 *
 *		The parameter sigma means different from original.
 *		A and B are calculated by the following formula:
 *			0 <= sigma <= 1
 *			A =     1 / ((1 + sigma / 2) * pi);
 *			B = sigma / ((1 + sigma / 2) * pi);
 *
 *		This formula is derived as following:
 *
 *		0. Normalize A-term and B-term of BSDF *individually*.
 *		   B-term is normalized at maximum point: dot(L, N) = 0.
 *			A = (1/pi) * A'
 *			B = (2/pi) * B'
 *
 *		1. Solve the following equation:
 *			A' + B' = 1
 *			B / A = sigma
 */

#ifndef __BSDF_OREN_NAYAR_H__
#define __BSDF_OREN_NAYAR_H__

CCL_NAMESPACE_BEGIN

typedef struct BsdfOrenNayarClosure {
	float m_a;
	float m_b;
} BsdfOrenNayarClosure;

__device float3 bsdf_oren_nayar_get_intensity(const ShaderClosure *sc, float3 n, float3 v, float3 l)
{
	float nl = max(dot(n, l), 0.0f);
	float nv = max(dot(n, v), 0.0f);

	float3 al = normalize(l - nl * n);
	float3 av = normalize(v - nv * n);
	float t = max(dot(al, av), 0.0f);

	float cos_a, cos_b;
	if(nl < nv) {
		cos_a = nl;
		cos_b = nv;
	}
	else {
		cos_a = nv;
		cos_b = nl;
	}

	float sin_a = sqrtf(1.0f - cos_a * cos_a);
	float tan_b = sqrtf(1.0f - cos_b * cos_b) / (cos_b + FLT_MIN);

	float is = nl * (sc->data0 + sc->data1 * t * sin_a * tan_b);
	return make_float3(is, is, is);
}

__device void bsdf_oren_nayar_setup(ShaderData *sd, ShaderClosure *sc, float sigma)
{
	sc->type = CLOSURE_BSDF_OREN_NAYAR_ID;
	sd->flag |= SD_BSDF | SD_BSDF_HAS_EVAL;

	sigma = clamp(sigma, 0.0f, 1.0f);

	sc->data0 =  1.0f / ((1.0f + 0.5f * sigma) * M_PI);
	sc->data1 = sigma / ((1.0f + 0.5f * sigma) * M_PI);
}

__device void bsdf_oren_nayar_blur(ShaderClosure *sc, float roughness)
{
}

__device float3 bsdf_oren_nayar_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	if (dot(sd->N, omega_in) > 0.0f) {
		*pdf = 0.5f * M_1_PI_F;
		return bsdf_oren_nayar_get_intensity(sc, sd->N, I, omega_in);
	}
	else {
		*pdf = 0.0f;
		return make_float3(0.0f, 0.0f, 0.0f);
	}
}

__device float3 bsdf_oren_nayar_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
	return make_float3(0.0f, 0.0f, 0.0f);
}

__device float bsdf_oren_nayar_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I)
{
	return 1.0f;
}

__device int bsdf_oren_nayar_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
	sample_uniform_hemisphere(sd->N, randu, randv, omega_in, pdf);

	if (dot(sd->Ng, *omega_in) > 0.0f) {
		*eval = bsdf_oren_nayar_get_intensity(sc, sd->N, sd->I, *omega_in);

#ifdef __RAY_DIFFERENTIALS__
		// TODO: find a better approximation for the bounce
		*domega_in_dx = (2.0f * dot(sd->N, sd->dI.dx)) * sd->N - sd->dI.dx;
		*domega_in_dy = (2.0f * dot(sd->N, sd->dI.dy)) * sd->N - sd->dI.dy;
		*domega_in_dx *= 125.0f;
		*domega_in_dy *= 125.0f;
#endif
	}
	else {
		*pdf = 0.0f;
		*eval = make_float3(0.0f, 0.0f, 0.0f);
	}

	return LABEL_REFLECT | LABEL_DIFFUSE;
}


CCL_NAMESPACE_END

#endif /* __BSDF_OREN_NAYAR_H__ */