Welcome to mirror list, hosted at ThFree Co, Russian Federation.

closure.h « svm « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 82274adeea8a7671027749d14787ba0a1c457241 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#pragma once

#include "kernel/closure/alloc.h"
#include "kernel/closure/bsdf.h"
#include "kernel/closure/bsdf_util.h"
#include "kernel/closure/emissive.h"

#include "kernel/util/color.h"

#include "kernel/svm/closure_principled.h"

CCL_NAMESPACE_BEGIN

/* Closure Nodes */

ccl_device void svm_node_glass_setup(ccl_private ShaderData *sd,
                                     ccl_private MicrofacetBsdf *bsdf,
                                     int type,
                                     float eta,
                                     float roughness,
                                     bool refract)
{
  if (type == CLOSURE_BSDF_SHARP_GLASS_ID) {
    if (refract) {
      bsdf->alpha_y = 0.0f;
      bsdf->alpha_x = 0.0f;
      bsdf->ior = eta;
      sd->flag |= bsdf_refraction_setup(bsdf);
    }
    else {
      bsdf->alpha_y = 0.0f;
      bsdf->alpha_x = 0.0f;
      bsdf->ior = eta;
      sd->flag |= bsdf_reflection_setup(bsdf);
    }
  }
  else if (type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
    bsdf->alpha_x = roughness;
    bsdf->alpha_y = roughness;
    bsdf->ior = eta;

    if (refract)
      sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
    else
      sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
  }
  else {
    bsdf->alpha_x = roughness;
    bsdf->alpha_y = roughness;
    bsdf->ior = eta;

    if (refract)
      sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
    else
      sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
  }
}

template<uint node_feature_mask, ShaderType shader_type>
ccl_device_noinline int svm_node_closure_bsdf(KernelGlobals kg,
                                              ccl_private ShaderData *sd,
                                              ccl_private float *stack,
                                              uint4 node,
                                              uint32_t path_flag,
                                              int offset)
{
  uint type, param1_offset, param2_offset;

  uint mix_weight_offset;
  svm_unpack_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
  float mix_weight = (stack_valid(mix_weight_offset) ? stack_load_float(stack, mix_weight_offset) :
                                                       1.0f);

  /* note we read this extra node before weight check, so offset is added */
  uint4 data_node = read_node(kg, &offset);

  /* Only compute BSDF for surfaces, transparent variable is shared with volume extinction. */
  IF_KERNEL_NODES_FEATURE(BSDF)
  {
    if ((shader_type != SHADER_TYPE_SURFACE) || mix_weight == 0.0f) {
      return offset;
    }
  }
  else
  {
    return offset;
  }

  if (type == CLOSURE_BSDF_PRINCIPLED_ID) {
    /* Principled BSDF uses different parameter packing. */
    svm_node_closure_principled(kg, sd, stack, node, data_node, mix_weight, path_flag, &offset);
    return offset;
  }

  float3 N = stack_valid(data_node.x) ? stack_load_float3(stack, data_node.x) : sd->N;
  if (!(sd->type & PRIMITIVE_CURVE)) {
    N = ensure_valid_reflection(sd->Ng, sd->I, N);
  }

  float param1 = (stack_valid(param1_offset)) ? stack_load_float(stack, param1_offset) :
                                                __uint_as_float(node.z);
  float param2 = (stack_valid(param2_offset)) ? stack_load_float(stack, param2_offset) :
                                                __uint_as_float(node.w);

  switch (type) {
    case CLOSURE_BSDF_DIFFUSE_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private OrenNayarBsdf *bsdf = (ccl_private OrenNayarBsdf *)bsdf_alloc(
          sd, sizeof(OrenNayarBsdf), weight);

      if (bsdf) {
        bsdf->N = N;

        float roughness = param1;

        if (roughness == 0.0f) {
          sd->flag |= bsdf_diffuse_setup((ccl_private DiffuseBsdf *)bsdf);
        }
        else {
          bsdf->roughness = roughness;
          sd->flag |= bsdf_oren_nayar_setup(bsdf);
        }
      }
      break;
    }
    case CLOSURE_BSDF_TRANSLUCENT_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private DiffuseBsdf *bsdf = (ccl_private DiffuseBsdf *)bsdf_alloc(
          sd, sizeof(DiffuseBsdf), weight);

      if (bsdf) {
        bsdf->N = N;
        sd->flag |= bsdf_translucent_setup(bsdf);
      }
      break;
    }
    case CLOSURE_BSDF_TRANSPARENT_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      bsdf_transparent_setup(sd, weight, path_flag);
      break;
    }
    case CLOSURE_BSDF_REFLECTION_ID:
    case CLOSURE_BSDF_MICROFACET_GGX_ID:
    case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
    case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
    case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
      if (!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
        break;
#endif
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)bsdf_alloc(
          sd, sizeof(MicrofacetBsdf), weight);

      if (!bsdf) {
        break;
      }

      float roughness = sqr(param1);

      bsdf->N = N;
      bsdf->ior = 1.0f;
      bsdf->extra = NULL;

      if (data_node.y == SVM_STACK_INVALID) {
        bsdf->T = zero_float3();
        bsdf->alpha_x = roughness;
        bsdf->alpha_y = roughness;
      }
      else {
        bsdf->T = stack_load_float3(stack, data_node.y);

        /* rotate tangent */
        float rotation = stack_load_float(stack, data_node.z);
        if (rotation != 0.0f)
          bsdf->T = rotate_around_axis(bsdf->T, bsdf->N, rotation * M_2PI_F);

        /* compute roughness */
        float anisotropy = clamp(param2, -0.99f, 0.99f);
        if (anisotropy < 0.0f) {
          bsdf->alpha_x = roughness / (1.0f + anisotropy);
          bsdf->alpha_y = roughness * (1.0f + anisotropy);
        }
        else {
          bsdf->alpha_x = roughness * (1.0f - anisotropy);
          bsdf->alpha_y = roughness / (1.0f - anisotropy);
        }
      }

      /* setup bsdf */
      if (type == CLOSURE_BSDF_REFLECTION_ID)
        sd->flag |= bsdf_reflection_setup(bsdf);
      else if (type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
        sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
      else if (type == CLOSURE_BSDF_MICROFACET_GGX_ID)
        sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
      else if (type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
        kernel_assert(stack_valid(data_node.w));
        Spectrum color = rgb_to_spectrum(stack_load_float3(stack, data_node.w));
        sd->flag |= bsdf_microfacet_multi_ggx_setup(kg, bsdf, sd, color);
      }
      else {
        sd->flag |= bsdf_ashikhmin_shirley_setup(bsdf);
      }

      break;
    }
    case CLOSURE_BSDF_REFRACTION_ID:
    case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
    case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
      if (!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
        break;
#endif
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)bsdf_alloc(
          sd, sizeof(MicrofacetBsdf), weight);

      if (bsdf) {
        bsdf->N = N;
        bsdf->T = zero_float3();
        bsdf->extra = NULL;

        float eta = fmaxf(param2, 1e-5f);
        eta = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;

        /* setup bsdf */
        if (type == CLOSURE_BSDF_REFRACTION_ID) {
          bsdf->alpha_x = 0.0f;
          bsdf->alpha_y = 0.0f;
          bsdf->ior = eta;

          sd->flag |= bsdf_refraction_setup(bsdf);
        }
        else {
          float roughness = sqr(param1);
          bsdf->alpha_x = roughness;
          bsdf->alpha_y = roughness;
          bsdf->ior = eta;

          if (type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
            sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
          else
            sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
        }
      }

      break;
    }
    case CLOSURE_BSDF_SHARP_GLASS_ID:
    case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
    case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
      if (!kernel_data.integrator.caustics_reflective &&
          !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE)) {
        break;
      }
#endif
      Spectrum weight = sd->svm_closure_weight * mix_weight;

      /* index of refraction */
      float eta = fmaxf(param2, 1e-5f);
      eta = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;

      /* fresnel */
      float cosNO = dot(N, sd->I);
      float fresnel = fresnel_dielectric_cos(cosNO, eta);
      float roughness = sqr(param1);

      /* reflection */
#ifdef __CAUSTICS_TRICKS__
      if (kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
      {
        ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)bsdf_alloc(
            sd, sizeof(MicrofacetBsdf), weight * fresnel);

        if (bsdf) {
          bsdf->N = N;
          bsdf->T = zero_float3();
          bsdf->extra = NULL;
          svm_node_glass_setup(sd, bsdf, type, eta, roughness, false);
        }
      }

      /* refraction */
#ifdef __CAUSTICS_TRICKS__
      if (kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
      {
        /* This is to prevent MNEE from receiving a null BSDF.
         * TODO: Doesn't this always enable the closure? */
        float refraction_fresnel = fmaxf(0.0001f, 1.0f - fresnel);
        ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)bsdf_alloc(
            sd, sizeof(MicrofacetBsdf), weight * refraction_fresnel);

        if (bsdf) {
          bsdf->N = N;
          bsdf->T = zero_float3();
          bsdf->extra = NULL;
          svm_node_glass_setup(sd, bsdf, type, eta, roughness, true);
        }
      }

      break;
    }
    case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
      if (!kernel_data.integrator.caustics_reflective &&
          !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
        break;
#endif
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)bsdf_alloc(
          sd, sizeof(MicrofacetBsdf), weight);
      if (!bsdf) {
        break;
      }

      /* TODO: Detect sharp, fallback. */

      bsdf->N = N;
      bsdf->extra = NULL;
      bsdf->T = zero_float3();

      float roughness = sqr(param1);
      bsdf->alpha_x = roughness;
      bsdf->alpha_y = roughness;
      float eta = fmaxf(param2, 1e-5f);
      bsdf->ior = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;

      kernel_assert(stack_valid(data_node.z));
      Spectrum color = rgb_to_spectrum(stack_load_float3(stack, data_node.z));

      /* setup bsdf */
      sd->flag |= bsdf_microfacet_multi_ggx_glass_setup(kg, bsdf, sd, color);
      break;
    }
    case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private VelvetBsdf *bsdf = (ccl_private VelvetBsdf *)bsdf_alloc(
          sd, sizeof(VelvetBsdf), weight);

      if (bsdf) {
        bsdf->N = N;

        bsdf->sigma = saturatef(param1);
        sd->flag |= bsdf_ashikhmin_velvet_setup(bsdf);
      }
      break;
    }
    case CLOSURE_BSDF_GLOSSY_TOON_ID:
#ifdef __CAUSTICS_TRICKS__
      if (!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
        break;
      ATTR_FALLTHROUGH;
#endif
    case CLOSURE_BSDF_DIFFUSE_TOON_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private ToonBsdf *bsdf = (ccl_private ToonBsdf *)bsdf_alloc(
          sd, sizeof(ToonBsdf), weight);

      if (bsdf) {
        bsdf->N = N;
        bsdf->size = param1;
        bsdf->smooth = param2;

        if (type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
          sd->flag |= bsdf_diffuse_toon_setup(bsdf);
        else
          sd->flag |= bsdf_glossy_toon_setup(bsdf);
      }
      break;
    }
#ifdef __HAIR__
    case CLOSURE_BSDF_HAIR_PRINCIPLED_ID: {
      uint4 data_node2 = read_node(kg, &offset);
      uint4 data_node3 = read_node(kg, &offset);
      uint4 data_node4 = read_node(kg, &offset);

      Spectrum weight = sd->svm_closure_weight * mix_weight;

      uint offset_ofs, ior_ofs, color_ofs, parametrization;
      svm_unpack_node_uchar4(data_node.y, &offset_ofs, &ior_ofs, &color_ofs, &parametrization);
      float alpha = stack_load_float_default(stack, offset_ofs, data_node.z);
      float ior = stack_load_float_default(stack, ior_ofs, data_node.w);

      uint coat_ofs, melanin_ofs, melanin_redness_ofs, absorption_coefficient_ofs;
      svm_unpack_node_uchar4(data_node2.x,
                             &coat_ofs,
                             &melanin_ofs,
                             &melanin_redness_ofs,
                             &absorption_coefficient_ofs);

      uint tint_ofs, random_ofs, random_color_ofs, random_roughness_ofs;
      svm_unpack_node_uchar4(
          data_node3.x, &tint_ofs, &random_ofs, &random_color_ofs, &random_roughness_ofs);

      const AttributeDescriptor attr_descr_random = find_attribute(kg, sd, data_node4.y);
      float random = 0.0f;
      if (attr_descr_random.offset != ATTR_STD_NOT_FOUND) {
        random = primitive_surface_attribute_float(kg, sd, attr_descr_random, NULL, NULL);
      }
      else {
        random = stack_load_float_default(stack, random_ofs, data_node3.y);
      }

      ccl_private PrincipledHairBSDF *bsdf = (ccl_private PrincipledHairBSDF *)bsdf_alloc(
          sd, sizeof(PrincipledHairBSDF), weight);
      if (bsdf) {
        ccl_private PrincipledHairExtra *extra = (ccl_private PrincipledHairExtra *)
            closure_alloc_extra(sd, sizeof(PrincipledHairExtra));

        if (!extra)
          break;

        /* Random factors range: [-randomization/2, +randomization/2]. */
        float random_roughness = stack_load_float_default(
            stack, random_roughness_ofs, data_node3.w);
        float factor_random_roughness = 1.0f + 2.0f * (random - 0.5f) * random_roughness;
        float roughness = param1 * factor_random_roughness;
        float radial_roughness = param2 * factor_random_roughness;

        /* Remap Coat value to [0, 100]% of Roughness. */
        float coat = stack_load_float_default(stack, coat_ofs, data_node2.y);
        float m0_roughness = 1.0f - clamp(coat, 0.0f, 1.0f);

        bsdf->N = N;
        bsdf->v = roughness;
        bsdf->s = radial_roughness;
        bsdf->m0_roughness = m0_roughness;
        bsdf->alpha = alpha;
        bsdf->eta = ior;
        bsdf->extra = extra;

        switch (parametrization) {
          case NODE_PRINCIPLED_HAIR_DIRECT_ABSORPTION: {
            float3 absorption_coefficient = stack_load_float3(stack, absorption_coefficient_ofs);
            bsdf->sigma = rgb_to_spectrum(absorption_coefficient);
            break;
          }
          case NODE_PRINCIPLED_HAIR_PIGMENT_CONCENTRATION: {
            float melanin = stack_load_float_default(stack, melanin_ofs, data_node2.z);
            float melanin_redness = stack_load_float_default(
                stack, melanin_redness_ofs, data_node2.w);

            /* Randomize melanin. */
            float random_color = stack_load_float_default(stack, random_color_ofs, data_node3.z);
            random_color = clamp(random_color, 0.0f, 1.0f);
            float factor_random_color = 1.0f + 2.0f * (random - 0.5f) * random_color;
            melanin *= factor_random_color;

            /* Map melanin 0..inf from more perceptually linear 0..1. */
            melanin = -logf(fmaxf(1.0f - melanin, 0.0001f));

            /* Benedikt Bitterli's melanin ratio remapping. */
            float eumelanin = melanin * (1.0f - melanin_redness);
            float pheomelanin = melanin * melanin_redness;
            Spectrum melanin_sigma = bsdf_principled_hair_sigma_from_concentration(eumelanin,
                                                                                   pheomelanin);

            /* Optional tint. */
            float3 tint = stack_load_float3(stack, tint_ofs);
            Spectrum tint_sigma = bsdf_principled_hair_sigma_from_reflectance(
                rgb_to_spectrum(tint), radial_roughness);

            bsdf->sigma = melanin_sigma + tint_sigma;
            break;
          }
          case NODE_PRINCIPLED_HAIR_REFLECTANCE: {
            float3 color = stack_load_float3(stack, color_ofs);
            bsdf->sigma = bsdf_principled_hair_sigma_from_reflectance(rgb_to_spectrum(color),
                                                                      radial_roughness);
            break;
          }
          default: {
            /* Fallback to brownish hair, same as defaults for melanin. */
            kernel_assert(!"Invalid Principled Hair parametrization!");
            bsdf->sigma = bsdf_principled_hair_sigma_from_concentration(0.0f, 0.8054375f);
            break;
          }
        }

        sd->flag |= bsdf_principled_hair_setup(sd, bsdf);
      }
      break;
    }
    case CLOSURE_BSDF_HAIR_REFLECTION_ID:
    case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;

      ccl_private HairBsdf *bsdf = (ccl_private HairBsdf *)bsdf_alloc(
          sd, sizeof(HairBsdf), weight);

      if (bsdf) {
        bsdf->N = N;
        bsdf->roughness1 = param1;
        bsdf->roughness2 = param2;
        bsdf->offset = -stack_load_float(stack, data_node.z);

        if (stack_valid(data_node.y)) {
          bsdf->T = normalize(stack_load_float3(stack, data_node.y));
        }
        else if (!(sd->type & PRIMITIVE_CURVE)) {
          bsdf->T = normalize(sd->dPdv);
          bsdf->offset = 0.0f;
        }
        else
          bsdf->T = normalize(sd->dPdu);

        if (type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
          sd->flag |= bsdf_hair_reflection_setup(bsdf);
        }
        else {
          sd->flag |= bsdf_hair_transmission_setup(bsdf);
        }
      }

      break;
    }
#endif /* __HAIR__ */

#ifdef __SUBSURFACE__
    case CLOSURE_BSSRDF_BURLEY_ID:
    case CLOSURE_BSSRDF_RANDOM_WALK_ID:
    case CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID: {
      Spectrum weight = sd->svm_closure_weight * mix_weight;
      ccl_private Bssrdf *bssrdf = bssrdf_alloc(sd, weight);

      if (bssrdf) {
        /* disable in case of diffuse ancestor, can't see it well then and
         * adds considerably noise due to probabilities of continuing path
         * getting lower and lower */
        if (path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
          param1 = 0.0f;

        bssrdf->radius = rgb_to_spectrum(stack_load_float3(stack, data_node.z) * param1);
        bssrdf->albedo = sd->svm_closure_weight;
        bssrdf->N = N;
        bssrdf->roughness = FLT_MAX;

        const float subsurface_ior = clamp(param2, 1.01f, 3.8f);
        const float subsurface_anisotropy = stack_load_float(stack, data_node.w);
        bssrdf->anisotropy = clamp(subsurface_anisotropy, 0.0f, 0.9f);

        sd->flag |= bssrdf_setup(sd, bssrdf, (ClosureType)type, subsurface_ior);
      }

      break;
    }
#endif
    default:
      break;
  }

  return offset;
}

template<ShaderType shader_type>
ccl_device_noinline void svm_node_closure_volume(KernelGlobals kg,
                                                 ccl_private ShaderData *sd,
                                                 ccl_private float *stack,
                                                 uint4 node)
{
#ifdef __VOLUME__
  /* Only sum extinction for volumes, variable is shared with surface transparency. */
  if (shader_type != SHADER_TYPE_VOLUME) {
    return;
  }

  uint type, density_offset, anisotropy_offset;

  uint mix_weight_offset;
  svm_unpack_node_uchar4(node.y, &type, &density_offset, &anisotropy_offset, &mix_weight_offset);
  float mix_weight = (stack_valid(mix_weight_offset) ? stack_load_float(stack, mix_weight_offset) :
                                                       1.0f);

  if (mix_weight == 0.0f) {
    return;
  }

  float density = (stack_valid(density_offset)) ? stack_load_float(stack, density_offset) :
                                                  __uint_as_float(node.z);
  density = mix_weight * fmaxf(density, 0.0f);

  /* Compute scattering coefficient. */
  Spectrum weight = sd->svm_closure_weight;

  if (type == CLOSURE_VOLUME_ABSORPTION_ID) {
    weight = one_spectrum() - weight;
  }

  weight *= density;

  /* Add closure for volume scattering. */
  if (type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
    ccl_private HenyeyGreensteinVolume *volume = (ccl_private HenyeyGreensteinVolume *)bsdf_alloc(
        sd, sizeof(HenyeyGreensteinVolume), weight);

    if (volume) {
      float anisotropy = (stack_valid(anisotropy_offset)) ?
                             stack_load_float(stack, anisotropy_offset) :
                             __uint_as_float(node.w);
      volume->g = anisotropy; /* g */
      sd->flag |= volume_henyey_greenstein_setup(volume);
    }
  }

  /* Sum total extinction weight. */
  volume_extinction_setup(sd, weight);
#endif
}

template<ShaderType shader_type>
ccl_device_noinline int svm_node_principled_volume(KernelGlobals kg,
                                                   ccl_private ShaderData *sd,
                                                   ccl_private float *stack,
                                                   uint4 node,
                                                   uint32_t path_flag,
                                                   int offset)
{
#ifdef __VOLUME__
  uint4 value_node = read_node(kg, &offset);
  uint4 attr_node = read_node(kg, &offset);

  /* Only sum extinction for volumes, variable is shared with surface transparency. */
  if (shader_type != SHADER_TYPE_VOLUME) {
    return offset;
  }

  uint density_offset, anisotropy_offset, absorption_color_offset, mix_weight_offset;
  svm_unpack_node_uchar4(
      node.y, &density_offset, &anisotropy_offset, &absorption_color_offset, &mix_weight_offset);
  float mix_weight = (stack_valid(mix_weight_offset) ? stack_load_float(stack, mix_weight_offset) :
                                                       1.0f);

  if (mix_weight == 0.0f) {
    return offset;
  }

  /* Compute density. */
  float primitive_density = 1.0f;
  float density = (stack_valid(density_offset)) ? stack_load_float(stack, density_offset) :
                                                  __uint_as_float(value_node.x);
  density = mix_weight * fmaxf(density, 0.0f);

  if (density > CLOSURE_WEIGHT_CUTOFF) {
    /* Density and color attribute lookup if available. */
    const AttributeDescriptor attr_density = find_attribute(kg, sd, attr_node.x);
    if (attr_density.offset != ATTR_STD_NOT_FOUND) {
      primitive_density = primitive_volume_attribute_float(kg, sd, attr_density);
      density = fmaxf(density * primitive_density, 0.0f);
    }
  }

  if (density > CLOSURE_WEIGHT_CUTOFF) {
    /* Compute scattering color. */
    Spectrum color = sd->svm_closure_weight;

    const AttributeDescriptor attr_color = find_attribute(kg, sd, attr_node.y);
    if (attr_color.offset != ATTR_STD_NOT_FOUND) {
      color *= rgb_to_spectrum(primitive_volume_attribute_float3(kg, sd, attr_color));
    }

    /* Add closure for volume scattering. */
    ccl_private HenyeyGreensteinVolume *volume = (ccl_private HenyeyGreensteinVolume *)bsdf_alloc(
        sd, sizeof(HenyeyGreensteinVolume), color * density);
    if (volume) {
      float anisotropy = (stack_valid(anisotropy_offset)) ?
                             stack_load_float(stack, anisotropy_offset) :
                             __uint_as_float(value_node.y);
      volume->g = anisotropy;
      sd->flag |= volume_henyey_greenstein_setup(volume);
    }

    /* Add extinction weight. */
    float3 absorption_color = max(sqrt(stack_load_float3(stack, absorption_color_offset)),
                                  zero_float3());

    Spectrum zero = zero_spectrum();
    Spectrum one = one_spectrum();
    Spectrum absorption = max(one - color, zero) *
                          max(one - rgb_to_spectrum(absorption_color), zero);
    volume_extinction_setup(sd, (color + absorption) * density);
  }

  /* Compute emission. */
  if (path_flag & PATH_RAY_SHADOW) {
    /* Don't need emission for shadows. */
    return offset;
  }

  uint emission_offset, emission_color_offset, blackbody_offset, temperature_offset;
  svm_unpack_node_uchar4(
      node.z, &emission_offset, &emission_color_offset, &blackbody_offset, &temperature_offset);
  float emission = (stack_valid(emission_offset)) ? stack_load_float(stack, emission_offset) :
                                                    __uint_as_float(value_node.z);
  float blackbody = (stack_valid(blackbody_offset)) ? stack_load_float(stack, blackbody_offset) :
                                                      __uint_as_float(value_node.w);

  if (emission > CLOSURE_WEIGHT_CUTOFF) {
    float3 emission_color = stack_load_float3(stack, emission_color_offset);
    emission_setup(sd, rgb_to_spectrum(emission * emission_color));
  }

  if (blackbody > CLOSURE_WEIGHT_CUTOFF) {
    float T = stack_load_float(stack, temperature_offset);

    /* Add flame temperature from attribute if available. */
    const AttributeDescriptor attr_temperature = find_attribute(kg, sd, attr_node.z);
    if (attr_temperature.offset != ATTR_STD_NOT_FOUND) {
      float temperature = primitive_volume_attribute_float(kg, sd, attr_temperature);
      T *= fmaxf(temperature, 0.0f);
    }

    T = fmaxf(T, 0.0f);

    /* Stefan-Boltzmann law. */
    float T4 = sqr(sqr(T));
    float sigma = 5.670373e-8f * 1e-6f / M_PI_F;
    float intensity = sigma * mix(1.0f, T4, blackbody);

    if (intensity > CLOSURE_WEIGHT_CUTOFF) {
      float3 blackbody_tint = stack_load_float3(stack, node.w);
      float3 bb = blackbody_tint * intensity *
                  rec709_to_rgb(kg, svm_math_blackbody_color_rec709(T));
      emission_setup(sd, rgb_to_spectrum(bb));
    }
  }
#endif
  return offset;
}

ccl_device_noinline void svm_node_closure_emission(ccl_private ShaderData *sd,
                                                   ccl_private float *stack,
                                                   uint4 node)
{
  uint mix_weight_offset = node.y;
  Spectrum weight = sd->svm_closure_weight;

  if (stack_valid(mix_weight_offset)) {
    float mix_weight = stack_load_float(stack, mix_weight_offset);

    if (mix_weight == 0.0f)
      return;

    weight *= mix_weight;
  }

  emission_setup(sd, weight);
}

ccl_device_noinline void svm_node_closure_background(ccl_private ShaderData *sd,
                                                     ccl_private float *stack,
                                                     uint4 node)
{
  uint mix_weight_offset = node.y;
  Spectrum weight = sd->svm_closure_weight;

  if (stack_valid(mix_weight_offset)) {
    float mix_weight = stack_load_float(stack, mix_weight_offset);

    if (mix_weight == 0.0f)
      return;

    weight *= mix_weight;
  }

  background_setup(sd, weight);
}

ccl_device_noinline void svm_node_closure_holdout(ccl_private ShaderData *sd,
                                                  ccl_private float *stack,
                                                  uint4 node)
{
  uint mix_weight_offset = node.y;

  if (stack_valid(mix_weight_offset)) {
    float mix_weight = stack_load_float(stack, mix_weight_offset);

    if (mix_weight == 0.0f)
      return;

    closure_alloc(
        sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight * mix_weight);
  }
  else
    closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight);

  sd->flag |= SD_HOLDOUT;
}

/* Closure Nodes */

ccl_device_inline void svm_node_closure_store_weight(ccl_private ShaderData *sd, Spectrum weight)
{
  sd->svm_closure_weight = weight;
}

ccl_device void svm_node_closure_set_weight(ccl_private ShaderData *sd, uint r, uint g, uint b)
{
  Spectrum weight = rgb_to_spectrum(
      make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b)));
  svm_node_closure_store_weight(sd, weight);
}

ccl_device void svm_node_closure_weight(ccl_private ShaderData *sd,
                                        ccl_private float *stack,
                                        uint weight_offset)
{
  Spectrum weight = rgb_to_spectrum(stack_load_float3(stack, weight_offset));
  svm_node_closure_store_weight(sd, weight);
}

ccl_device_noinline void svm_node_emission_weight(KernelGlobals kg,
                                                  ccl_private ShaderData *sd,
                                                  ccl_private float *stack,
                                                  uint4 node)
{
  uint color_offset = node.y;
  uint strength_offset = node.z;

  float strength = stack_load_float(stack, strength_offset);
  Spectrum weight = rgb_to_spectrum(stack_load_float3(stack, color_offset)) * strength;

  svm_node_closure_store_weight(sd, weight);
}

ccl_device_noinline void svm_node_mix_closure(ccl_private ShaderData *sd,
                                              ccl_private float *stack,
                                              uint4 node)
{
  /* fetch weight from blend input, previous mix closures,
   * and write to stack to be used by closure nodes later */
  uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
  svm_unpack_node_uchar4(
      node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);

  float weight = stack_load_float(stack, weight_offset);
  weight = saturatef(weight);

  float in_weight = (stack_valid(in_weight_offset)) ? stack_load_float(stack, in_weight_offset) :
                                                      1.0f;

  if (stack_valid(weight1_offset))
    stack_store_float(stack, weight1_offset, in_weight * (1.0f - weight));
  if (stack_valid(weight2_offset))
    stack_store_float(stack, weight2_offset, in_weight * weight);
}

/* (Bump) normal */

ccl_device void svm_node_set_normal(KernelGlobals kg,
                                    ccl_private ShaderData *sd,
                                    ccl_private float *stack,
                                    uint in_direction,
                                    uint out_normal)
{
  float3 normal = stack_load_float3(stack, in_direction);
  sd->N = normal;
  stack_store_float3(stack, out_normal, normal);
}

CCL_NAMESPACE_END