Welcome to mirror list, hosted at ThFree Co, Russian Federation.

svm_closure.h « svm « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a3689a94f404951d1ca22d00b36119a6d8a054e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

CCL_NAMESPACE_BEGIN

/* Closure Nodes */

ccl_device void svm_node_glass_setup(ShaderData *sd, MicrofacetBsdf *bsdf, int type, float eta, float roughness, bool refract)
{
	if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
		if(refract) {
			bsdf->alpha_y = 0.0f;
			bsdf->alpha_x = 0.0f;
			bsdf->ior = eta;
			sd->flag |= bsdf_refraction_setup(bsdf);
		}
		else {
			bsdf->alpha_y = 0.0f;
			bsdf->alpha_x = 0.0f;
			bsdf->ior = 0.0f;
			sd->flag |= bsdf_reflection_setup(bsdf);
		}
	}
	else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
		bsdf->alpha_x = roughness;
		bsdf->alpha_y = roughness;
		bsdf->ior = eta;

		if(refract)
			sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
		else
			sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
	}
	else {
		bsdf->alpha_x = roughness;
		bsdf->alpha_y = roughness;
		bsdf->ior = eta;

		if(refract)
			sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
		else
			sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
	}
}

ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag, int *offset)
{
	uint type, param1_offset, param2_offset;

	uint mix_weight_offset;
	decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
	float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);

	/* note we read this extra node before weight check, so offset is added */
	uint4 data_node = read_node(kg, offset);

	if(mix_weight == 0.0f)
		return;

	float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): sd->N;

	float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
	float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);

	switch(type) {
		case CLOSURE_BSDF_PRINCIPLED_ID: {
			uint specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset, sheen_offset,
				sheen_tint_offset, clearcoat_offset, clearcoat_gloss_offset, eta_offset, transparency_offset,
				anisotropic_rotation_offset, refraction_roughness_offset;
			uint4 data_node2 = read_node(kg, offset);

			float3 T = stack_load_float3(stack, data_node.y);
			decode_node_uchar4(data_node.z, &specular_offset, &roughness_offset, &specular_tint_offset, &anisotropic_offset);
			decode_node_uchar4(data_node.w, &sheen_offset, &sheen_tint_offset, &clearcoat_offset, &clearcoat_gloss_offset);
			decode_node_uchar4(data_node2.x, &eta_offset, &transparency_offset, &anisotropic_rotation_offset, &refraction_roughness_offset);

			// get Disney principled parameters
			float metallic = param1;
			float subsurface = param2;
			float specular = stack_load_float(stack, specular_offset);
			float roughness = stack_load_float(stack, roughness_offset);
			float specular_tint = stack_load_float(stack, specular_tint_offset);
			float anisotropic = stack_load_float(stack, anisotropic_offset);
			float sheen = stack_load_float(stack, sheen_offset);
			float sheen_tint = stack_load_float(stack, sheen_tint_offset);
			float clearcoat = stack_load_float(stack, clearcoat_offset);
			float clearcoat_gloss = stack_load_float(stack, clearcoat_gloss_offset);
			float transparency = stack_load_float(stack, transparency_offset);
			float anisotropic_rotation = stack_load_float(stack, anisotropic_rotation_offset);
			float refraction_roughness = stack_load_float(stack, refraction_roughness_offset);
			float eta = fmaxf(stack_load_float(stack, eta_offset), 1e-5f);

			ClosureType distribution = stack_valid(data_node2.y) ? (ClosureType) data_node2.y : CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;

			/* rotate tangent */
			if(anisotropic_rotation != 0.0f)
				T = rotate_around_axis(T, N, anisotropic_rotation * M_2PI_F);

			/* calculate ior */
			float ior = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;

			// calculate fresnel for refraction
			float cosNO = dot(N, sd->I);
			float fresnel = fresnel_dielectric_cos(cosNO, ior);

			// calculate weights of the diffuse and specular part
			float diffuse_weight = (1.0f - saturate(metallic)) * (1.0f - saturate(transparency));
			
			float transp = saturate(transparency) * (1.0f - saturate(metallic));
			float specular_weight = (1.0f - transp);

			// get the base color
			uint4 data_base_color = read_node(kg, offset);
			float3 base_color = stack_valid(data_base_color.x) ? stack_load_float3(stack, data_base_color.x) :
				make_float3(__uint_as_float(data_base_color.y), __uint_as_float(data_base_color.z), __uint_as_float(data_base_color.w));

			// get the additional clearcoat normal and subsurface scattering radius
			uint4 data_cn_ssr = read_node(kg, offset);
			float3 clearcoat_normal = stack_valid(data_cn_ssr.x) ? stack_load_float3(stack, data_cn_ssr.x) : sd->N;
			float3 subsurface_radius = stack_valid(data_cn_ssr.y) ? stack_load_float3(stack, data_cn_ssr.y) : make_float3(1.0f, 1.0f, 1.0f);

			// get the subsurface color
			uint4 data_subsurface_color = read_node(kg, offset);
			float3 subsurface_color = stack_valid(data_subsurface_color.x) ? stack_load_float3(stack, data_subsurface_color.x) :
				make_float3(__uint_as_float(data_subsurface_color.y), __uint_as_float(data_subsurface_color.z), __uint_as_float(data_subsurface_color.w));

			float3 weight = sd->svm_closure_weight * mix_weight;

#ifdef __SUBSURFACE__
			float3 albedo = subsurface_color * subsurface + base_color * (1.0f - subsurface);
			float3 subsurf_weight = weight * albedo * diffuse_weight;
			float subsurf_sample_weight = fabsf(average(subsurf_weight));

			/* disable in case of diffuse ancestor, can't see it well then and
			 * adds considerably noise due to probabilities of continuing path
			 * getting lower and lower */
			if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR) {
				subsurface = 0.0f;
			}

			/* diffuse */
			if(fabsf(average(base_color)) > CLOSURE_WEIGHT_CUTOFF) {
				if(subsurface < CLOSURE_WEIGHT_CUTOFF && diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
					float3 diff_weight = weight * base_color * diffuse_weight;

					PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);

					if(bsdf) {
						bsdf->N = N;
						bsdf->roughness = roughness;

						/* setup bsdf */
						sd->flag |= bsdf_principled_diffuse_setup(bsdf);
					}
				}
				else if(subsurface > CLOSURE_WEIGHT_CUTOFF && subsurf_sample_weight > CLOSURE_WEIGHT_CUTOFF) {
					/* radius * scale */
					float3 radius = subsurface_radius * subsurface;
					/* sharpness */
					float sharpness = 0.0f;
					/* texture color blur */
					float texture_blur = 0.0f;

					/* create one closure per color channel */
					Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(subsurf_weight.x, 0.0f, 0.0f));
					if(bssrdf) {
						bssrdf->sample_weight = subsurf_sample_weight;
						bssrdf->radius = radius.x;
						bssrdf->texture_blur = texture_blur;
						bssrdf->albedo = albedo.x;
						bssrdf->sharpness = sharpness;
						bssrdf->N = N;
						bssrdf->roughness = roughness;

						/* setup bsdf */
						sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
					}

					bssrdf = bssrdf_alloc(sd, make_float3(0.0f, subsurf_weight.y, 0.0f));
					if(bssrdf) {
						bssrdf->sample_weight = subsurf_sample_weight;
						bssrdf->radius = radius.y;
						bssrdf->texture_blur = texture_blur;
						bssrdf->albedo = albedo.y;
						bssrdf->sharpness = sharpness;
						bssrdf->N = N;
						bssrdf->roughness = roughness;

						/* setup bsdf */
						sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
					}

					bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, subsurf_weight.z));
					if(bssrdf) {
						bssrdf->sample_weight = subsurf_sample_weight;
						bssrdf->radius = radius.z;
						bssrdf->texture_blur = texture_blur;
						bssrdf->albedo = albedo.z;
						bssrdf->sharpness = sharpness;
						bssrdf->N = N;
						bssrdf->roughness = roughness;

						/* setup bsdf */
						sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
					}
				}
			}
#else
			/* diffuse */
			if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
				float3 diff_weight = weight * base_color * diffuse_weight;

				PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);

				if(bsdf) {
					bsdf->N = N;
					bsdf->roughness = roughness;

					/* setup bsdf */
					sd->flag |= bsdf_principled_diffuse_setup(bsdf);
				}
			}
#endif

			/* sheen */
			if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF && sheen > CLOSURE_WEIGHT_CUTOFF) {
				float m_cdlum = linear_rgb_to_gray(base_color);
				float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(1.0f, 1.0f, 1.0f); // normalize lum. to isolate hue+sat

				/* color of the sheen component */
				float3 sheen_color = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - sheen_tint) + m_ctint * sheen_tint;

				float3 sheen_weight = weight * sheen * sheen_color * diffuse_weight;

				PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf*)bsdf_alloc(sd, sizeof(PrincipledSheenBsdf), sheen_weight);

				if(bsdf) {
					bsdf->N = N;

					/* setup bsdf */
					sd->flag |= bsdf_principled_sheen_setup(bsdf);
				}
			}

			/* specular reflection */
#ifdef __CAUSTICS_TRICKS__
			if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
				if(specular_weight > CLOSURE_WEIGHT_CUTOFF && (specular > CLOSURE_WEIGHT_CUTOFF || metallic > CLOSURE_WEIGHT_CUTOFF)) {
					float3 spec_weight = weight * specular_weight;

					MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), spec_weight);
					MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));

					if(bsdf && extra) {
						bsdf->N = N;
						bsdf->ior = (2.0f / (1.0f - safe_sqrtf(0.08f * specular))) - 1.0f;
						bsdf->T = T;
						bsdf->extra = extra;

						float aspect = safe_sqrtf(1.0f - anisotropic * 0.9f);
						float r2 = roughness * roughness;

						bsdf->alpha_x = fmaxf(0.001f, r2 / aspect);
						bsdf->alpha_y = fmaxf(0.001f, r2 * aspect);

						float m_cdlum = 0.3f * base_color.x + 0.6f * base_color.y + 0.1f * base_color.z; // luminance approx.
						float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(0.0f, 0.0f, 0.0f); // normalize lum. to isolate hue+sat
						float3 tmp_col = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint) + m_ctint * specular_tint;

						bsdf->extra->cspec0 = (specular * 0.08f * tmp_col) * (1.0f - metallic) + base_color * metallic;
						bsdf->extra->color = base_color;

						/* setup bsdf */
						if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID || roughness <= 0.075f) /* use single-scatter GGX */
							sd->flag |= bsdf_microfacet_ggx_aniso_fresnel_setup(bsdf);
						else /* use multi-scatter GGX */
							sd->flag |= bsdf_microfacet_multi_ggx_aniso_fresnel_setup(bsdf);
					}
				}
#ifdef __CAUSTICS_TRICKS__
			}
#endif

			/* BSDF */
#ifdef __CAUSTICS_TRICKS__
			if(kernel_data.integrator.caustics_reflective || kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
				if(transp > CLOSURE_WEIGHT_CUTOFF) {
					float3 glass_weight = weight * transp;
					float3 cspec0 = base_color * specular_tint + make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint);

					if(roughness <= 5e-2f || distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID) { /* use single-scatter GGX */
						float refl_roughness = roughness;

						/* reflection */
#ifdef __CAUSTICS_TRICKS__
						if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
						{
							MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight*fresnel);
							MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));

							if(bsdf && extra) {
								bsdf->N = N;
								bsdf->extra = extra;

								bsdf->alpha_x = refl_roughness * refl_roughness;
								bsdf->alpha_y = refl_roughness * refl_roughness;
								bsdf->ior = ior;

								bsdf->extra->color = base_color;
								bsdf->extra->cspec0 = cspec0;

								/* setup bsdf */
								sd->flag |= bsdf_microfacet_ggx_fresnel_setup(bsdf);
							}
						}

						/* refraction */
#ifdef __CAUSTICS_TRICKS__
						if(kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
						{
							MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), base_color*glass_weight*(1.0f - fresnel));

							if(bsdf) {
								bsdf->N = N;

								if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID)
									refraction_roughness = 1.0f - (1.0f - refl_roughness) * (1.0f - refraction_roughness);
								else
									refraction_roughness = refl_roughness;

								bsdf->alpha_x = refraction_roughness * refraction_roughness;
								bsdf->alpha_y = refraction_roughness * refraction_roughness;
								bsdf->ior = ior;

								/* setup bsdf */
								sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
							}
						}
					}
					else { /* use multi-scatter GGX */
						MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight);
						MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));

						if(bsdf && extra) {
							bsdf->N = N;
							bsdf->extra = extra;
							bsdf->T = make_float3(0.0f, 0.0f, 0.0f);

							bsdf->alpha_x = roughness * roughness;
							bsdf->alpha_y = roughness * roughness;
							bsdf->ior = ior;

							bsdf->extra->color = base_color;
							bsdf->extra->cspec0 = cspec0;

							/* setup bsdf */
							sd->flag |= bsdf_microfacet_multi_ggx_glass_fresnel_setup(bsdf);
						}
					}
				}
#ifdef __CAUSTICS_TRICKS__
			}
#endif

			/* clearcoat */
#ifdef __CAUSTICS_TRICKS__
			if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
				if(clearcoat > CLOSURE_WEIGHT_CUTOFF) {
					MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
					MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));

					if(bsdf && extra) {
						bsdf->N = clearcoat_normal;
						bsdf->ior = 1.5f;
						bsdf->extra = extra;

						bsdf->alpha_x = 0.1f * (1.0f - clearcoat_gloss) + 0.001f * clearcoat_gloss;
						bsdf->alpha_y = 0.1f * (1.0f - clearcoat_gloss) + 0.001f * clearcoat_gloss;

						bsdf->extra->cspec0 = make_float3(0.04f, 0.04f, 0.04f);
						bsdf->extra->clearcoat = clearcoat;

						/* setup bsdf */
						sd->flag |= bsdf_microfacet_ggx_clearcoat_setup(bsdf);
					}
				}
#ifdef __CAUSTICS_TRICKS__
			}
#endif

			break;
		}
		case CLOSURE_BSDF_DIFFUSE_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			OrenNayarBsdf *bsdf = (OrenNayarBsdf*)bsdf_alloc(sd, sizeof(OrenNayarBsdf), weight);

			if(bsdf) {
				bsdf->N = N;

				float roughness = param1;

				if(roughness == 0.0f) {
					sd->flag |= bsdf_diffuse_setup((DiffuseBsdf*)bsdf);
				}
				else {
					bsdf->roughness = roughness;
					sd->flag |= bsdf_oren_nayar_setup(bsdf);
				}
			}
			break;
		}
		case CLOSURE_BSDF_TRANSLUCENT_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);

			if(bsdf) {
				bsdf->N = N;
				sd->flag |= bsdf_translucent_setup(bsdf);
			}
			break;
		}
		case CLOSURE_BSDF_TRANSPARENT_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			ShaderClosure *bsdf = bsdf_alloc(sd, sizeof(ShaderClosure), weight);

			if(bsdf) {
				sd->flag |= bsdf_transparent_setup(bsdf);
			}
			break;
		}
		case CLOSURE_BSDF_REFLECTION_ID:
		case CLOSURE_BSDF_MICROFACET_GGX_ID:
		case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
		case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
		case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
				break;
#endif
			float3 weight = sd->svm_closure_weight * mix_weight;
			MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);

			if(bsdf) {
				bsdf->N = N;
				bsdf->alpha_x = param1;
				bsdf->alpha_y = param1;
				bsdf->ior = 0.0f;
				bsdf->extra = NULL;

				/* setup bsdf */
				if(type == CLOSURE_BSDF_REFLECTION_ID)
					sd->flag |= bsdf_reflection_setup(bsdf);
				else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
					sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
				else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
					sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
				else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
					kernel_assert(stack_valid(data_node.z));
					bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
					if(bsdf->extra) {
						bsdf->extra->color = stack_load_float3(stack, data_node.z);
						sd->flag |= bsdf_microfacet_multi_ggx_setup(bsdf);
					}
				}
				else
					sd->flag |= bsdf_ashikhmin_shirley_setup(bsdf);
			}

			break;
		}
		case CLOSURE_BSDF_REFRACTION_ID:
		case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
		case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
				break;
#endif
			float3 weight = sd->svm_closure_weight * mix_weight;
			MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);

			if(bsdf) {
				bsdf->N = N;
				bsdf->extra = NULL;

				float eta = fmaxf(param2, 1e-5f);
				eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;

				/* setup bsdf */
				if(type == CLOSURE_BSDF_REFRACTION_ID) {
					bsdf->alpha_x = 0.0f;
					bsdf->alpha_y = 0.0f;
					bsdf->ior = eta;

					sd->flag |= bsdf_refraction_setup(bsdf);
				}
				else {
					bsdf->alpha_x = param1;
					bsdf->alpha_y = param1;
					bsdf->ior = eta;

					if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
						sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
					else
						sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
				}
			}

			break;
		}
		case CLOSURE_BSDF_SHARP_GLASS_ID:
		case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
		case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_reflective &&
			   !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
			{
				break;
			}
#endif
			float3 weight = sd->svm_closure_weight * mix_weight;

			/* index of refraction */
			float eta = fmaxf(param2, 1e-5f);
			eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;

			/* fresnel */
			float cosNO = dot(N, sd->I);
			float fresnel = fresnel_dielectric_cos(cosNO, eta);
			float roughness = param1;

			/* reflection */
#ifdef __CAUSTICS_TRICKS__
			if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
			{
				MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight*fresnel);

				if(bsdf) {
					bsdf->N = N;
					bsdf->extra = NULL;
					svm_node_glass_setup(sd, bsdf, type, eta, roughness, false);
				}
			}

			/* refraction */
#ifdef __CAUSTICS_TRICKS__
			if(kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
			{
				MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight*(1.0f - fresnel));

				if(bsdf) {
					bsdf->N = N;
					bsdf->extra = NULL;
					svm_node_glass_setup(sd, bsdf, type, eta, roughness, true);
				}
			}

			break;
		}
		case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
				break;
#endif
			float3 weight = sd->svm_closure_weight * mix_weight;
			MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
			MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));

			if(bsdf && extra) {
				bsdf->N = N;
				bsdf->extra = extra;
				bsdf->T = make_float3(0.0f, 0.0f, 0.0f);

				bsdf->alpha_x = param1;
				bsdf->alpha_y = param1;
				float eta = fmaxf(param2, 1e-5f);
				bsdf->ior = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;

				kernel_assert(stack_valid(data_node.z));
				bsdf->extra->color = stack_load_float3(stack, data_node.z);

				/* setup bsdf */
				sd->flag |= bsdf_microfacet_multi_ggx_glass_setup(bsdf);
			}

			break;
		}
		case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
		case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
		case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID:
		case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID: {
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
				break;
#endif
			float3 weight = sd->svm_closure_weight * mix_weight;
			MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);

			if(bsdf) {
				bsdf->N = N;
				bsdf->extra = NULL;
				bsdf->T = stack_load_float3(stack, data_node.y);

				/* rotate tangent */
				float rotation = stack_load_float(stack, data_node.z);

				if(rotation != 0.0f)
					bsdf->T = rotate_around_axis(bsdf->T, bsdf->N, rotation * M_2PI_F);

				/* compute roughness */
				float roughness = param1;
				float anisotropy = clamp(param2, -0.99f, 0.99f);

				if(anisotropy < 0.0f) {
					bsdf->alpha_x = roughness/(1.0f + anisotropy);
					bsdf->alpha_y = roughness*(1.0f + anisotropy);
				}
				else {
					bsdf->alpha_x = roughness*(1.0f - anisotropy);
					bsdf->alpha_y = roughness/(1.0f - anisotropy);
				}

				bsdf->ior = 0.0f;

				if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID) {
					sd->flag |= bsdf_microfacet_beckmann_aniso_setup(bsdf);
				}
				else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID) {
					sd->flag |= bsdf_microfacet_ggx_aniso_setup(bsdf);
				}
				else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
					kernel_assert(stack_valid(data_node.w));
					bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
					if(bsdf->extra) {
						bsdf->extra->color = stack_load_float3(stack, data_node.w);
						sd->flag |= bsdf_microfacet_multi_ggx_aniso_setup(bsdf);
					}
				}
				else
					sd->flag |= bsdf_ashikhmin_shirley_aniso_setup(bsdf);
			}
			break;
		}
		case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			VelvetBsdf *bsdf = (VelvetBsdf*)bsdf_alloc(sd, sizeof(VelvetBsdf), weight);

			if(bsdf) {
				bsdf->N = N;

				bsdf->sigma = saturate(param1);
				sd->flag |= bsdf_ashikhmin_velvet_setup(bsdf);
			}
			break;
		}
		case CLOSURE_BSDF_GLOSSY_TOON_ID:
#ifdef __CAUSTICS_TRICKS__
			if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
				break;
#endif
		case CLOSURE_BSDF_DIFFUSE_TOON_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			ToonBsdf *bsdf = (ToonBsdf*)bsdf_alloc(sd, sizeof(ToonBsdf), weight);

			if(bsdf) {
				bsdf->N = N;
				bsdf->size = param1;
				bsdf->smooth = param2;
				
				if(type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
					sd->flag |= bsdf_diffuse_toon_setup(bsdf);
				else
					sd->flag |= bsdf_glossy_toon_setup(bsdf);
			}
			break;
		}
#ifdef __HAIR__
		case CLOSURE_BSDF_HAIR_REFLECTION_ID:
		case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight;
			
			if(sd->flag & SD_BACKFACING && sd->type & PRIMITIVE_ALL_CURVE) {
				ShaderClosure *bsdf = bsdf_alloc(sd, sizeof(ShaderClosure), weight);

				if(bsdf) {
					/* todo: giving a fixed weight here will cause issues when
					 * mixing multiple BSDFS. energy will not be conserved and
					 * the throughput can blow up after multiple bounces. we
					 * better figure out a way to skip backfaces from rays
					 * spawned by transmission from the front */
					bsdf->weight = make_float3(1.0f, 1.0f, 1.0f);
					sd->flag |= bsdf_transparent_setup(bsdf);
				}
			}
			else {
				HairBsdf *bsdf = (HairBsdf*)bsdf_alloc(sd, sizeof(HairBsdf), weight);

				if(bsdf) {
					bsdf->roughness1 = param1;
					bsdf->roughness2 = param2;
					bsdf->offset = -stack_load_float(stack, data_node.z);

					if(stack_valid(data_node.y)) {
						bsdf->T = normalize(stack_load_float3(stack, data_node.y));
					}
					else if(!(sd->type & PRIMITIVE_ALL_CURVE)) {
						bsdf->T = normalize(sd->dPdv);
						bsdf->offset = 0.0f;
					}
					else
						bsdf->T = normalize(sd->dPdu);

					if(type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
						sd->flag |= bsdf_hair_reflection_setup(bsdf);
					}
					else {
						sd->flag |= bsdf_hair_transmission_setup(bsdf);
					}
				}
			}

			break;
		}
#endif

#ifdef __SUBSURFACE__
		case CLOSURE_BSSRDF_CUBIC_ID:
		case CLOSURE_BSSRDF_GAUSSIAN_ID:
		case CLOSURE_BSSRDF_BURLEY_ID: {
			float3 albedo = sd->svm_closure_weight;
			float3 weight = sd->svm_closure_weight * mix_weight;
			float sample_weight = fabsf(average(weight));
			
			/* disable in case of diffuse ancestor, can't see it well then and
			 * adds considerably noise due to probabilities of continuing path
			 * getting lower and lower */
			if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
				param1 = 0.0f;

			if(sample_weight > CLOSURE_WEIGHT_CUTOFF) {
				/* radius * scale */
				float3 radius = stack_load_float3(stack, data_node.z)*param1;
				/* sharpness */
				float sharpness = stack_load_float(stack, data_node.w);
				/* texture color blur */
				float texture_blur = param2;

				/* create one closure per color channel */
				Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(weight.x, 0.0f, 0.0f));
				if(bssrdf) {
					bssrdf->sample_weight = sample_weight;
					bssrdf->radius = radius.x;
					bssrdf->texture_blur = texture_blur;
					bssrdf->albedo = albedo.x;
					bssrdf->sharpness = sharpness;
					bssrdf->N = N;
					sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
				}

				bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
				if(bssrdf) {
					bssrdf->sample_weight = sample_weight;
					bssrdf->radius = radius.y;
					bssrdf->texture_blur = texture_blur;
					bssrdf->albedo = albedo.y;
					bssrdf->sharpness = sharpness;
					bssrdf->N = N;
					sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
				}

				bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
				if(bssrdf) {
					bssrdf->sample_weight = sample_weight;
					bssrdf->radius = radius.z;
					bssrdf->texture_blur = texture_blur;
					bssrdf->albedo = albedo.z;
					bssrdf->sharpness = sharpness;
					bssrdf->N = N;
					sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
				}
			}

			break;
		}
#endif
		default:
			break;
	}
}

ccl_device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
#ifdef __VOLUME__
	uint type, param1_offset, param2_offset;

	uint mix_weight_offset;
	decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
	float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);

	if(mix_weight == 0.0f)
		return;

	float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
	float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
	float density = fmaxf(param1, 0.0f);

	switch(type) {
		case CLOSURE_VOLUME_ABSORPTION_ID: {
			float3 weight = (make_float3(1.0f, 1.0f, 1.0f) - sd->svm_closure_weight) * mix_weight * density;
			ShaderClosure *sc = closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_NONE_ID, weight);

			if(sc) {
				sd->flag |= volume_absorption_setup(sc);
			}
			break;
		}
		case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID: {
			float3 weight = sd->svm_closure_weight * mix_weight * density;
			HenyeyGreensteinVolume *volume = (HenyeyGreensteinVolume*)bsdf_alloc(sd, sizeof(HenyeyGreensteinVolume), weight);

			if(volume) {
				volume->g = param2; /* g */
				sd->flag |= volume_henyey_greenstein_setup(volume);
			}
			break;
		}
		default:
			break;
	}
#endif
}

ccl_device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
	uint mix_weight_offset = node.y;

	if(stack_valid(mix_weight_offset)) {
		float mix_weight = stack_load_float(stack, mix_weight_offset);

		if(mix_weight == 0.0f)
			return;

		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, sd->svm_closure_weight * mix_weight);
	}
	else
		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, sd->svm_closure_weight);

	sd->flag |= SD_EMISSION;
}

ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
	uint mix_weight_offset = node.y;

	if(stack_valid(mix_weight_offset)) {
		float mix_weight = stack_load_float(stack, mix_weight_offset);

		if(mix_weight == 0.0f)
			return;

		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, sd->svm_closure_weight * mix_weight);
	}
	else
		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, sd->svm_closure_weight);
}

ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
	uint mix_weight_offset = node.y;

	if(stack_valid(mix_weight_offset)) {
		float mix_weight = stack_load_float(stack, mix_weight_offset);

		if(mix_weight == 0.0f)
			return;

		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight * mix_weight);
	}
	else
		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight);

	sd->flag |= SD_HOLDOUT;
}

ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
	uint mix_weight_offset = node.y;

	if(stack_valid(mix_weight_offset)) {
		float mix_weight = stack_load_float(stack, mix_weight_offset);

		if(mix_weight == 0.0f)
			return;

		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight * mix_weight);
	}
	else
		closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight);

	sd->flag |= SD_AO;
}

/* Closure Nodes */

ccl_device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
	sd->svm_closure_weight = weight;
}

ccl_device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
	float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
	svm_node_closure_store_weight(sd, weight);
}

ccl_device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
	float3 weight = stack_load_float3(stack, weight_offset);

	svm_node_closure_store_weight(sd, weight);
}

ccl_device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
	uint color_offset = node.y;
	uint strength_offset = node.z;

	float strength = stack_load_float(stack, strength_offset);
	float3 weight = stack_load_float3(stack, color_offset)*strength;

	svm_node_closure_store_weight(sd, weight);
}

ccl_device void svm_node_mix_closure(ShaderData *sd, float *stack, uint4 node)
{
	/* fetch weight from blend input, previous mix closures,
	 * and write to stack to be used by closure nodes later */
	uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
	decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);

	float weight = stack_load_float(stack, weight_offset);
	weight = saturate(weight);

	float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;

	if(stack_valid(weight1_offset))
		stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
	if(stack_valid(weight2_offset))
		stack_store_float(stack, weight2_offset, in_weight*weight);
}

/* (Bump) normal */

ccl_device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
	float3 normal = stack_load_float3(stack, in_direction);
	sd->N = normal;
	stack_store_float3(stack, out_normal, normal);
}

CCL_NAMESPACE_END