Welcome to mirror list, hosted at ThFree Co, Russian Federation.

svm_noise.h « svm « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c77c2a1c482bf30774f7aad86c9fbae7fffa626f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * Adapted from Open Shading Language with this license:
 *
 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
 * All Rights Reserved.
 *
 * Modifications Copyright 2011, Blender Foundation.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * * Neither the name of Sony Pictures Imageworks nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

CCL_NAMESPACE_BEGIN

#ifndef __KERNEL_SSE2__
ccl_device int quick_floor(float x)
{
	return float_to_int(x) - ((x < 0) ? 1 : 0);
}
#else
ccl_device_inline ssei quick_floor_sse(const ssef& x)
{
	ssei b = truncatei(x);
	ssei isneg = cast((x < ssef(0.0f)).m128);
	return b + isneg; // unsaturated add 0xffffffff is the same as subtract -1
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float bits_to_01(uint bits)
{
	return bits * (1.0f/(float)0xFFFFFFFF);
}
#else
ccl_device_inline ssef bits_to_01_sse(const ssei& bits)
{
	return uint32_to_float(bits) * ssef(1.0f/(float)0xFFFFFFFF);
}
#endif

ccl_device uint hash(uint kx, uint ky, uint kz)
{
	// define some handy macros
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
#define final(a,b,c) \
{ \
	c ^= b; c -= rot(b,14); \
	a ^= c; a -= rot(c,11); \
	b ^= a; b -= rot(a,25); \
	c ^= b; c -= rot(b,16); \
	a ^= c; a -= rot(c,4);  \
	b ^= a; b -= rot(a,14); \
	c ^= b; c -= rot(b,24); \
}
	// now hash the data!
	uint a, b, c, len = 3;
	a = b = c = 0xdeadbeef + (len << 2) + 13;

	c += kz;
	b += ky;
	a += kx;
	final(a, b, c);

	return c;
	// macros not needed anymore
#undef rot
#undef final
}

#ifdef __KERNEL_SSE2__
ccl_device_inline ssei hash_sse(const ssei& kx, const ssei& ky, const ssei& kz)
{
#define rot(x,k) (((x)<<(k)) | (srl(x, 32-(k))))
#define xor_rot(a, b, c) do {a = a^b; a = a - rot(b, c);} while(0)

	uint len = 3;
	ssei magic = ssei(0xdeadbeef + (len << 2) + 13);
	ssei a = magic + kx;
	ssei b = magic + ky;
	ssei c = magic + kz;

	xor_rot(c, b, 14);
	xor_rot(a, c, 11);
	xor_rot(b, a, 25);
	xor_rot(c, b, 16);
	xor_rot(a, c, 4);
	xor_rot(b, a, 14);
	xor_rot(c, b, 24);

	return c;
#undef rot
#undef xor_rot
}
#endif

#if 0 // unused
ccl_device int imod(int a, int b)
{
	a %= b;
	return a < 0 ? a + b : a;
}

ccl_device uint phash(int kx, int ky, int kz, int3 p) 
{
	return hash(imod(kx, p.x), imod(ky, p.y), imod(kz, p.z));
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float floorfrac(float x, int* i)
{
	*i = quick_floor(x);
	return x - *i;
}
#else
ccl_device_inline ssef floorfrac_sse(const ssef& x, ssei *i)
{
	*i = quick_floor_sse(x);
	return x - ssef(*i);
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float fade(float t)
{
	return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
}
#else
ccl_device_inline ssef fade_sse(const ssef *t)
{
	ssef a = madd(*t, ssef(6.0f), ssef(-15.0f));
	ssef b = madd(*t, a, ssef(10.0f));
	return ((*t) * (*t)) * ((*t) * b);
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float nerp(float t, float a, float b)
{
	return (1.0f - t) * a + t * b;
}
#else
ccl_device_inline ssef nerp_sse(const ssef& t, const ssef& a, const ssef& b)
{
	ssef x1 = (ssef(1.0f) - t) * a;
	return madd(t, b, x1);
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float grad(int hash, float x, float y, float z)
{
	// use vectors pointing to the edges of the cube
	int h = hash & 15;
	float u = h<8 ? x : y;
	float vt = ((h == 12) | (h == 14)) ? x : z;
	float v = h < 4 ? y : vt;
	return ((h&1) ? -u : u) + ((h&2) ? -v : v);
}
#else
ccl_device_inline ssef grad_sse(const ssei& hash, const ssef& x, const ssef& y, const ssef& z)
{
	ssei c1 = ssei(1);
	ssei c2 = ssei(2);

	ssei h = hash & ssei(15);                             // h = hash & 15

	sseb case_ux = h < ssei(8);                           // 0xffffffff if h < 8 else 0

	ssef u = select(case_ux, x, y);                       // u = h<8 ? x : y

	sseb case_vy = h < ssei(4);                           // 0xffffffff if h < 4 else 0

	sseb case_h12 = h == ssei(12);                        // 0xffffffff if h == 12 else 0
	sseb case_h14 = h == ssei(14);                        // 0xffffffff if h == 14 else 0

	sseb case_vx = case_h12 | case_h14;                   // 0xffffffff if h == 12 or h == 14 else 0

	ssef v = select(case_vy, y, select(case_vx, x, z));   // v = h<4 ? y : h == 12 || h == 14 ? x : z

	ssei case_uneg = (h & c1) << 31;                      // 1<<31 if h&1 else 0
	ssef case_uneg_mask = cast(case_uneg);                // -0.0 if h&1 else +0.0
	ssef ru = u ^ case_uneg_mask;                         // -u if h&1 else u (copy float sign)

	ssei case_vneg = (h & c2) << 30;                      // 2<<30 if h&2 else 0
	ssef case_vneg_mask = cast(case_vneg);                // -0.0 if h&2 else +0.0
	ssef rv = v ^ case_vneg_mask;                         // -v if h&2 else v (copy float sign)

	ssef r = ru + rv;                                     // ((h&1) ? -u : u) + ((h&2) ? -v : v)
	return r;
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float scale3(float result)
{
	return 0.9820f * result;
}
#else
ccl_device_inline ssef scale3_sse(const ssef& result)
{
	return ssef(0.9820f) * result;
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device_noinline float perlin(float x, float y, float z)
{
	int X; float fx = floorfrac(x, &X);
	int Y; float fy = floorfrac(y, &Y);
	int Z; float fz = floorfrac(z, &Z);

	float u = fade(fx);
	float v = fade(fy);
	float w = fade(fz);

	float result;

	result = nerp (w, nerp (v, nerp (u, grad (hash (X  , Y  , Z  ), fx	 , fy	 , fz	  ),
										grad (hash (X+1, Y  , Z  ), fx-1.0f, fy	 , fz	  )),
							   nerp (u, grad (hash (X  , Y+1, Z  ), fx	 , fy-1.0f, fz	  ),
										grad (hash (X+1, Y+1, Z  ), fx-1.0f, fy-1.0f, fz	  ))),
					  nerp (v, nerp (u, grad (hash (X  , Y  , Z+1), fx	 , fy	 , fz-1.0f ),
										grad (hash (X+1, Y  , Z+1), fx-1.0f, fy	 , fz-1.0f )),
							   nerp (u, grad (hash (X  , Y+1, Z+1), fx	 , fy-1.0f, fz-1.0f ),
										grad (hash (X+1, Y+1, Z+1), fx-1.0f, fy-1.0f, fz-1.0f ))));
	float r = scale3(result);

	/* can happen for big coordinates, things even out to 0.0 then anyway */
	return (isfinite(r))? r: 0.0f;
}
#else
ccl_device_noinline float perlin(float x, float y, float z)
{
	ssef xyz = ssef(x, y, z, 0.0f);
	ssei XYZ;

	ssef fxyz = floorfrac_sse(xyz, &XYZ);

	ssef uvw = fade_sse(&fxyz);
	ssef u = shuffle<0>(uvw), v = shuffle<1>(uvw), w = shuffle<2>(uvw);

	ssei XYZ_ofc = XYZ + ssei(1);
	ssei vdy = shuffle<1, 1, 1, 1>(XYZ, XYZ_ofc);                      // +0, +0, +1, +1
	ssei vdz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(XYZ, XYZ_ofc)); // +0, +1, +0, +1

	ssei h1 = hash_sse(shuffle<0>(XYZ),     vdy, vdz);               // hash directions 000, 001, 010, 011
	ssei h2 = hash_sse(shuffle<0>(XYZ_ofc), vdy, vdz);               // hash directions 100, 101, 110, 111

	ssef fxyz_ofc = fxyz - ssef(1.0f);
	ssef vfy = shuffle<1, 1, 1, 1>(fxyz, fxyz_ofc);
	ssef vfz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(fxyz, fxyz_ofc));

	ssef g1 = grad_sse(h1, shuffle<0>(fxyz),     vfy, vfz);
	ssef g2 = grad_sse(h2, shuffle<0>(fxyz_ofc), vfy, vfz);
	ssef n1 = nerp_sse(u, g1, g2);

	ssef n1_half = shuffle<2, 3, 2, 3>(n1);      // extract 2 floats to a separate vector
	ssef n2 = nerp_sse(v, n1, n1_half);          // process nerp([a, b, _, _], [c, d, _, _]) -> [a', b', _, _]

	ssef n2_second = shuffle<1>(n2);           // extract b to a separate vector
	ssef result = nerp_sse(w, n2, n2_second);    // process nerp([a', _, _, _], [b', _, _, _]) -> [a'', _, _, _]

	ssef r = scale3_sse(result);

	ssef infmask = cast(ssei(0x7f800000));
	ssef rinfmask = ((r & infmask) == infmask).m128; // 0xffffffff if r is inf/-inf/nan else 0
	ssef rfinite = andnot(rinfmask, r);              // 0 if r is inf/-inf/nan else r
	return extract<0>(rfinite);
}
#endif

/* perlin noise in range 0..1 */
ccl_device float noise(float3 p)
{
	float r = perlin(p.x, p.y, p.z);
	return 0.5f*r + 0.5f;
}

/* perlin noise in range -1..1 */
ccl_device float snoise(float3 p)
{
	return perlin(p.x, p.y, p.z);
}

/* cell noise */
#ifndef __KERNEL_SSE2__
ccl_device_noinline float cellnoise(float3 p)
{
	uint ix = quick_floor(p.x);
	uint iy = quick_floor(p.y);
	uint iz = quick_floor(p.z);

	return bits_to_01(hash(ix, iy, iz));
}

ccl_device float3 cellnoise_color(float3 p)
{
	float r = cellnoise(p);
	float g = cellnoise(make_float3(p.y, p.x, p.z));
	float b = cellnoise(make_float3(p.y, p.z, p.x));

	return make_float3(r, g, b);
}
#else
ccl_device ssef cellnoise_color(const ssef& p)
{
	ssei ip = quick_floor_sse(p);
	ssei ip_yxz = shuffle<1, 0, 2, 3>(ip);
	ssei ip_xyy = shuffle<0, 1, 1, 3>(ip);
	ssei ip_zzx = shuffle<2, 2, 0, 3>(ip);
	return bits_to_01_sse(hash_sse(ip_xyy, ip_yxz, ip_zzx));
}
#endif

CCL_NAMESPACE_END