Welcome to mirror list, hosted at ThFree Co, Russian Federation.

svm_noise.h « svm « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 91dda8972f93874532f3505ca34470689d1672cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 * Adapted from Open Shading Language with this license:
 *
 * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
 * All Rights Reserved.
 *
 * Modifications Copyright 2011, Blender Foundation.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * * Neither the name of Sony Pictures Imageworks nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

CCL_NAMESPACE_BEGIN

#ifndef __KERNEL_SSE2__
ccl_device int quick_floor(float x)
{
	return float_to_int(x) - ((x < 0) ? 1 : 0);
}
#else
ccl_device_inline __m128i quick_floor_sse(const __m128& x)
{
	__m128i b = _mm_cvttps_epi32(x);
	__m128i isneg = _mm_castps_si128(_mm_cmplt_ps(x, _mm_set1_ps(0.0f)));
	return _mm_add_epi32(b, isneg); // unsaturated add 0xffffffff is the same as subtract -1
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float bits_to_01(uint bits)
{
	return bits * (1.0f/(float)0xFFFFFFFF);
}
#else
ccl_device_inline __m128 bits_to_01_sse(const __m128i& bits)
{
	return _mm_mul_ps(uint32_to_float(bits), _mm_set1_ps(1.0f/(float)0xFFFFFFFF));
}
#endif

ccl_device uint hash(uint kx, uint ky, uint kz)
{
	// define some handy macros
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
#define final(a,b,c) \
{ \
	c ^= b; c -= rot(b,14); \
	a ^= c; a -= rot(c,11); \
	b ^= a; b -= rot(a,25); \
	c ^= b; c -= rot(b,16); \
	a ^= c; a -= rot(c,4);  \
	b ^= a; b -= rot(a,14); \
	c ^= b; c -= rot(b,24); \
}
	// now hash the data!
	uint a, b, c, len = 3;
	a = b = c = 0xdeadbeef + (len << 2) + 13;

	c += kz;
	b += ky;
	a += kx;
	final(a, b, c);

	return c;
	// macros not needed anymore
#undef rot
#undef final
}

#ifdef __KERNEL_SSE2__
ccl_device_inline __m128i hash_sse(const __m128i& kx, const __m128i& ky, const __m128i& kz)
{
#define rot(x,k) _mm_or_si128(_mm_slli_epi32((x), (k)), _mm_srli_epi32((x), 32-(k)))
#define xor_rot(a, b, c) do {a = _mm_xor_si128(a, b); a = _mm_sub_epi32(a, rot(b, c));} while(0)

	uint len = 3;
	__m128i magic = _mm_set1_epi32(0xdeadbeef + (len << 2) + 13);
	__m128i a = _mm_add_epi32(magic, kx);
	__m128i b = _mm_add_epi32(magic, ky);
	__m128i c = _mm_add_epi32(magic, kz);

	xor_rot(c, b, 14);
	xor_rot(a, c, 11);
	xor_rot(b, a, 25);
	xor_rot(c, b, 16);
	xor_rot(a, c, 4);
	xor_rot(b, a, 14);
	xor_rot(c, b, 24);

	return c;
#undef rot
#undef xor_rot
}
#endif

#if 0 // unused
ccl_device int imod(int a, int b)
{
	a %= b;
	return a < 0 ? a + b : a;
}

ccl_device uint phash(int kx, int ky, int kz, int3 p) 
{
	return hash(imod(kx, p.x), imod(ky, p.y), imod(kz, p.z));
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float floorfrac(float x, int* i)
{
	*i = quick_floor(x);
	return x - *i;
}
#else
ccl_device_inline __m128 floorfrac_sse(const __m128& x, __m128i *i)
{
	*i = quick_floor_sse(x);
	return _mm_sub_ps(x, _mm_cvtepi32_ps(*i));
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float fade(float t)
{
	return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
}
#else
ccl_device_inline __m128 fade_sse(const __m128 *t)
{
	__m128 a = fma(*t, _mm_set1_ps(6.0f), _mm_set1_ps(-15.0f));
	__m128 b = fma(*t, a, _mm_set1_ps(10.0f));
	return _mm_mul_ps(_mm_mul_ps(*t, *t), _mm_mul_ps(*t, b));
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float nerp(float t, float a, float b)
{
	return (1.0f - t) * a + t * b;
}
#else
ccl_device_inline __m128 nerp_sse(const __m128& t, const __m128& a, const __m128& b)
{
	__m128 x1 = _mm_mul_ps(_mm_sub_ps(_mm_set1_ps(1.0f), t), a);
	return fma(t, b, x1);
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float grad(int hash, float x, float y, float z)
{
	// use vectors pointing to the edges of the cube
	int h = hash & 15;
	float u = h<8 ? x : y;
	float vt = ((h == 12) | (h == 14)) ? x : z;
	float v = h < 4 ? y : vt;
	return ((h&1) ? -u : u) + ((h&2) ? -v : v);
}
#else
ccl_device_inline __m128 grad_sse(const __m128i& hash, const __m128& x, const __m128& y, const __m128& z)
{
	__m128i c1 = _mm_set1_epi32(1);
	__m128i c2 = _mm_set1_epi32(2);

	__m128i h = _mm_and_si128(hash, _mm_set1_epi32(15));          // h = hash & 15

	__m128i case_ux = _mm_cmplt_epi32(h, _mm_set1_epi32(8));       // 0xffffffff if h < 8 else 0

	__m128 u = blend(_mm_castsi128_ps(case_ux), x, y);             // u = h<8 ? x : y

	__m128i case_vy = _mm_cmplt_epi32(h, _mm_set1_epi32(4));       // 0xffffffff if h < 4 else 0

	__m128i case_h12 = _mm_cmpeq_epi32(h, _mm_set1_epi32(12));     // 0xffffffff if h == 12 else 0
	__m128i case_h14 = _mm_cmpeq_epi32(h, _mm_set1_epi32(14));     // 0xffffffff if h == 14 else 0

	__m128i case_vx = _mm_or_si128(case_h12, case_h14);            // 0xffffffff if h == 12 or h == 14 else 0

	__m128 v = blend(_mm_castsi128_ps(case_vy), y, blend(_mm_castsi128_ps(case_vx), x, z)); // v = h<4 ? y : h == 12 || h == 14 ? x : z

	__m128i case_uneg = _mm_slli_epi32(_mm_and_si128(h, c1), 31);  // 1<<31 if h&1 else 0
	__m128 case_uneg_mask = _mm_castsi128_ps(case_uneg);           // -0.0 if h&1 else +0.0
	__m128 ru = _mm_xor_ps(u, case_uneg_mask);                     // -u if h&1 else u (copy float sign)

	__m128i case_vneg = _mm_slli_epi32(_mm_and_si128(h, c2), 30);  // 2<<30 if h&2 else 0
	__m128 case_vneg_mask = _mm_castsi128_ps(case_vneg);           // -0.0 if h&2 else +0.0
	__m128 rv = _mm_xor_ps(v, case_vneg_mask);                     // -v if h&2 else v (copy float sign)

	__m128 r = _mm_add_ps(ru, rv);                                 // ((h&1) ? -u : u) + ((h&2) ? -v : v)
	return r;
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device float scale3(float result)
{
	return 0.9820f * result;
}
#else
ccl_device_inline __m128 scale3_sse(const __m128& result)
{
	return _mm_mul_ps(_mm_set1_ps(0.9820f), result);
}
#endif

#ifndef __KERNEL_SSE2__
ccl_device_noinline float perlin(float x, float y, float z)
{
	int X; float fx = floorfrac(x, &X);
	int Y; float fy = floorfrac(y, &Y);
	int Z; float fz = floorfrac(z, &Z);

	float u = fade(fx);
	float v = fade(fy);
	float w = fade(fz);

	float result;

	result = nerp (w, nerp (v, nerp (u, grad (hash (X  , Y  , Z  ), fx	 , fy	 , fz	  ),
										grad (hash (X+1, Y  , Z  ), fx-1.0f, fy	 , fz	  )),
							   nerp (u, grad (hash (X  , Y+1, Z  ), fx	 , fy-1.0f, fz	  ),
										grad (hash (X+1, Y+1, Z  ), fx-1.0f, fy-1.0f, fz	  ))),
					  nerp (v, nerp (u, grad (hash (X  , Y  , Z+1), fx	 , fy	 , fz-1.0f ),
										grad (hash (X+1, Y  , Z+1), fx-1.0f, fy	 , fz-1.0f )),
							   nerp (u, grad (hash (X  , Y+1, Z+1), fx	 , fy-1.0f, fz-1.0f ),
										grad (hash (X+1, Y+1, Z+1), fx-1.0f, fy-1.0f, fz-1.0f ))));
	float r = scale3(result);

	/* can happen for big coordinates, things even out to 0.0 then anyway */
	return (isfinite(r))? r: 0.0f;
}
#else
ccl_device_noinline float perlin(float x, float y, float z)
{
	__m128 xyz = _mm_setr_ps(x, y, z, 0.0f);
	__m128i XYZ;

	__m128 fxyz = floorfrac_sse(xyz, &XYZ);

	__m128 uvw = fade_sse(&fxyz);
	__m128 u = broadcast<0>(uvw), v = broadcast<1>(uvw), w = broadcast<2>(uvw);

	__m128i XYZ_ofc = _mm_add_epi32(XYZ, _mm_set1_epi32(1));
	__m128i vdy = shuffle<1, 1, 1, 1>(XYZ, XYZ_ofc);                      // +0, +0, +1, +1
	__m128i vdz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(XYZ, XYZ_ofc)); // +0, +1, +0, +1

	__m128i h1 = hash_sse(broadcast<0>(XYZ),     vdy, vdz);               // hash directions 000, 001, 010, 011
	__m128i h2 = hash_sse(broadcast<0>(XYZ_ofc), vdy, vdz);               // hash directions 100, 101, 110, 111

	__m128 fxyz_ofc = _mm_sub_ps(fxyz, _mm_set1_ps(1.0f));
	__m128 vfy = shuffle<1, 1, 1, 1>(fxyz, fxyz_ofc);
	__m128 vfz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(fxyz, fxyz_ofc));

	__m128 g1 = grad_sse(h1, broadcast<0>(fxyz),     vfy, vfz);
	__m128 g2 = grad_sse(h2, broadcast<0>(fxyz_ofc), vfy, vfz);
	__m128 n1 = nerp_sse(u, g1, g2);

	__m128 n1_half = shuffle<2, 3, 2, 3>(n1);      // extract 2 floats to a separate vector
	__m128 n2 = nerp_sse(v, n1, n1_half);          // process nerp([a, b, _, _], [c, d, _, _]) -> [a', b', _, _]

	__m128 n2_second = broadcast<1>(n2);           // extract b to a separate vector
	__m128 result = nerp_sse(w, n2, n2_second);    // process nerp([a', _, _, _], [b', _, _, _]) -> [a'', _, _, _]

	__m128 r = scale3_sse(result);

	__m128 infmask = _mm_castsi128_ps(_mm_set1_epi32(0x7f800000));
	__m128 rinfmask = _mm_cmpeq_ps(_mm_and_ps(r, infmask), infmask); // 0xffffffff if r is inf/-inf/nan else 0
	__m128 rfinite = _mm_andnot_ps(rinfmask, r);   // 0 if r is inf/-inf/nan else r
	return _mm_cvtss_f32(rfinite);
}
#endif

#if 0 // unused
ccl_device_noinline float perlin_periodic(float x, float y, float z, float3 pperiod)
{
	int X; float fx = floorfrac(x, &X);
	int Y; float fy = floorfrac(y, &Y);
	int Z; float fz = floorfrac(z, &Z);

	int3 p;

	p.x = max(quick_floor(pperiod.x), 1);
	p.y = max(quick_floor(pperiod.y), 1);
	p.z = max(quick_floor(pperiod.z), 1);

	float u = fade(fx);
	float v = fade(fy);
	float w = fade(fz);

	float result;

	result = nerp (w, nerp (v, nerp (u, grad (phash (X  , Y  , Z  , p), fx	 , fy	 , fz	  ),
										grad (phash (X+1, Y  , Z  , p), fx-1.0f, fy	 , fz	  )),
							   nerp (u, grad (phash (X  , Y+1, Z  , p), fx	 , fy-1.0f, fz	  ),
										grad (phash (X+1, Y+1, Z  , p), fx-1.0f, fy-1.0f, fz	  ))),
					  nerp (v, nerp (u, grad (phash (X  , Y  , Z+1, p), fx	 , fy	 , fz-1.0f ),
										grad (phash (X+1, Y  , Z+1, p), fx-1.0f, fy	 , fz-1.0f )),
							   nerp (u, grad (phash (X  , Y+1, Z+1, p), fx	 , fy-1.0f, fz-1.0f ),
										grad (phash (X+1, Y+1, Z+1, p), fx-1.0f, fy-1.0f, fz-1.0f ))));
	float r = scale3(result);

	/* can happen for big coordinates, things even out to 0.0 then anyway */
	return (isfinite(r))? r: 0.0f;
}
#endif

/* perlin noise in range 0..1 */
ccl_device float noise(float3 p)
{
	float r = perlin(p.x, p.y, p.z);
	return 0.5f*r + 0.5f;
}

/* perlin noise in range -1..1 */
ccl_device float snoise(float3 p)
{
	return perlin(p.x, p.y, p.z);
}

/* cell noise */
#ifndef __KERNEL_SSE2__
ccl_device_noinline float cellnoise(float3 p)
{
	uint ix = quick_floor(p.x);
	uint iy = quick_floor(p.y);
	uint iz = quick_floor(p.z);

	return bits_to_01(hash(ix, iy, iz));
}

ccl_device float3 cellnoise_color(float3 p)
{
	float r = cellnoise(p);
	float g = cellnoise(make_float3(p.y, p.x, p.z));
	float b = cellnoise(make_float3(p.y, p.z, p.x));

	return make_float3(r, g, b);
}
#else
ccl_device __m128 cellnoise_color(const __m128& p)
{
	__m128i ip = quick_floor_sse(p);
	__m128i ip_yxz = shuffle<1, 0, 2, 3>(ip);
	__m128i ip_xyy = shuffle<0, 1, 1, 3>(ip);
	__m128i ip_zzx = shuffle<2, 2, 0, 3>(ip);
	return bits_to_01_sse(hash_sse(ip_xyy, ip_yxz, ip_zzx));
}
#endif

#if 0 // unused
/* periodic perlin noise in range 0..1 */
ccl_device float pnoise(float3 p, float3 pperiod)
{
	float r = perlin_periodic(p.x, p.y, p.z, pperiod);
	return 0.5f*r + 0.5f;
}

/* periodic perlin noise in range -1..1 */
ccl_device float psnoise(float3 p, float3 pperiod)
{
	return perlin_periodic(p.x, p.y, p.z, pperiod);
}
#endif

CCL_NAMESPACE_END