Welcome to mirror list, hosted at ThFree Co, Russian Federation.

denoising.cpp « render « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4055bc4773b1eee74073415ca6652dd96b40bef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/*
 * Copyright 2011-2018 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "render/denoising.h"

#include "kernel/filter/filter_defines.h"

#include "util/util_foreach.h"
#include "util/util_map.h"
#include "util/util_system.h"
#include "util/util_task.h"
#include "util/util_time.h"

#include <OpenImageIO/filesystem.h>

CCL_NAMESPACE_BEGIN

/* Utility Functions */

static void print_progress(int num, int total, int frame, int num_frames)
{
  const char *label = "Denoise Frame ";
  int cols = system_console_width();

  cols -= strlen(label);

  int len = 1;
  for (int x = total; x > 9; x /= 10) {
    len++;
  }

  int bars = cols - 2 * len - 6;

  printf("\r%s", label);

  if (num_frames > 1) {
    int frame_len = 1;
    for (int x = num_frames - 1; x > 9; x /= 10) {
      frame_len++;
    }
    bars -= frame_len + 2;
    printf("%*d ", frame_len, frame);
  }

  int v = int(float(num) * bars / total);
  printf("[");
  for (int i = 0; i < v; i++) {
    printf("=");
  }
  if (v < bars) {
    printf(">");
  }
  for (int i = v + 1; i < bars; i++) {
    printf(" ");
  }
  printf(string_printf("] %%%dd / %d", len, total).c_str(), num);
  fflush(stdout);
}

/* Splits in at its last dot, setting suffix to the part after the dot and in to the part before
 * it. Returns whether a dot was found. */
static bool split_last_dot(string &in, string &suffix)
{
  size_t pos = in.rfind(".");
  if (pos == string::npos) {
    return false;
  }
  suffix = in.substr(pos + 1);
  in = in.substr(0, pos);
  return true;
}

/* Separate channel names as generated by Blender.
 * If views is true:
 *   Inputs are expected in the form RenderLayer.Pass.View.Channel, sets renderlayer to
 *   "RenderLayer.View" Otherwise: Inputs are expected in the form RenderLayer.Pass.Channel */
static bool parse_channel_name(
    string name, string &renderlayer, string &pass, string &channel, bool multiview_channels)
{
  if (!split_last_dot(name, channel)) {
    return false;
  }
  string view;
  if (multiview_channels && !split_last_dot(name, view)) {
    return false;
  }
  if (!split_last_dot(name, pass)) {
    return false;
  }
  renderlayer = name;

  if (multiview_channels) {
    renderlayer += "." + view;
  }

  return true;
}

/* Channel Mapping */

struct ChannelMapping {
  int channel;
  string name;
};

static void fill_mapping(vector<ChannelMapping> &map, int pos, string name, string channels)
{
  for (const char *chan = channels.c_str(); *chan; chan++) {
    map.push_back({pos++, name + "." + *chan});
  }
}

static const int INPUT_NUM_CHANNELS = 15;
static const int INPUT_DENOISING_DEPTH = 0;
static const int INPUT_DENOISING_NORMAL = 1;
static const int INPUT_DENOISING_SHADOWING = 4;
static const int INPUT_DENOISING_ALBEDO = 5;
static const int INPUT_NOISY_IMAGE = 8;
static const int INPUT_DENOISING_VARIANCE = 11;
static const int INPUT_DENOISING_INTENSITY = 14;
static vector<ChannelMapping> input_channels()
{
  vector<ChannelMapping> map;
  fill_mapping(map, INPUT_DENOISING_DEPTH, "Denoising Depth", "Z");
  fill_mapping(map, INPUT_DENOISING_NORMAL, "Denoising Normal", "XYZ");
  fill_mapping(map, INPUT_DENOISING_SHADOWING, "Denoising Shadowing", "X");
  fill_mapping(map, INPUT_DENOISING_ALBEDO, "Denoising Albedo", "RGB");
  fill_mapping(map, INPUT_NOISY_IMAGE, "Noisy Image", "RGB");
  fill_mapping(map, INPUT_DENOISING_VARIANCE, "Denoising Variance", "RGB");
  fill_mapping(map, INPUT_DENOISING_INTENSITY, "Denoising Intensity", "X");
  return map;
}

static const int OUTPUT_NUM_CHANNELS = 3;
static vector<ChannelMapping> output_channels()
{
  vector<ChannelMapping> map;
  fill_mapping(map, 0, "Combined", "RGB");
  return map;
}

/* Renderlayer Handling */

bool DenoiseImageLayer::detect_denoising_channels()
{
  /* Map device input to image channels. */
  input_to_image_channel.clear();
  input_to_image_channel.resize(INPUT_NUM_CHANNELS, -1);

  foreach (const ChannelMapping &mapping, input_channels()) {
    vector<string>::iterator i = find(channels.begin(), channels.end(), mapping.name);
    if (i == channels.end()) {
      return false;
    }

    size_t input_channel = mapping.channel;
    size_t layer_channel = i - channels.begin();
    input_to_image_channel[input_channel] = layer_to_image_channel[layer_channel];
  }

  /* Map device output to image channels. */
  output_to_image_channel.clear();
  output_to_image_channel.resize(OUTPUT_NUM_CHANNELS, -1);

  foreach (const ChannelMapping &mapping, output_channels()) {
    vector<string>::iterator i = find(channels.begin(), channels.end(), mapping.name);
    if (i == channels.end()) {
      return false;
    }

    size_t output_channel = mapping.channel;
    size_t layer_channel = i - channels.begin();
    output_to_image_channel[output_channel] = layer_to_image_channel[layer_channel];
  }

  /* Check that all buffer channels are correctly set. */
  for (int i = 0; i < INPUT_NUM_CHANNELS; i++) {
    assert(input_to_image_channel[i] >= 0);
  }
  for (int i = 0; i < OUTPUT_NUM_CHANNELS; i++) {
    assert(output_to_image_channel[i] >= 0);
  }

  return true;
}

bool DenoiseImageLayer::match_channels(int neighbor,
                                       const std::vector<string> &channelnames,
                                       const std::vector<string> &neighbor_channelnames)
{
  neighbor_input_to_image_channel.resize(neighbor + 1);
  vector<int> &mapping = neighbor_input_to_image_channel[neighbor];

  assert(mapping.size() == 0);
  mapping.resize(input_to_image_channel.size(), -1);

  for (int i = 0; i < input_to_image_channel.size(); i++) {
    const string &channel = channelnames[input_to_image_channel[i]];
    std::vector<string>::const_iterator frame_channel = find(
        neighbor_channelnames.begin(), neighbor_channelnames.end(), channel);

    if (frame_channel == neighbor_channelnames.end()) {
      return false;
    }

    mapping[i] = frame_channel - neighbor_channelnames.begin();
  }

  return true;
}

/* Denoise Task */

DenoiseTask::DenoiseTask(Device *device,
                         Denoiser *denoiser,
                         int frame,
                         const vector<int> &neighbor_frames)
    : denoiser(denoiser),
      device(device),
      frame(frame),
      neighbor_frames(neighbor_frames),
      current_layer(0),
      input_pixels(device, "filter input buffer", MEM_READ_ONLY),
      num_tiles(0)
{
  image.samples = denoiser->samples_override;
}

DenoiseTask::~DenoiseTask()
{
  free();
}

/* Device callbacks */

bool DenoiseTask::acquire_tile(Device *device, Device *tile_device, RenderTile &tile)
{
  thread_scoped_lock tile_lock(tiles_mutex);

  if (tiles.empty()) {
    return false;
  }

  tile = tiles.front();
  tiles.pop_front();

  device->map_tile(tile_device, tile);

  print_progress(num_tiles - tiles.size(), num_tiles, frame, denoiser->num_frames);

  return true;
}

/* Mapping tiles is required for regular rendering since each tile has its separate memory
 * which may be allocated on a different device.
 * For standalone denoising, there is a single memory that is present on all devices, so the only
 * thing that needs to be done here is to specify the surrounding tile geometry.
 *
 * However, since there is only one large memory, the denoised result has to be written to
 * a different buffer to avoid having to copy an entire horizontal slice of the image. */
void DenoiseTask::map_neighboring_tiles(RenderTile *tiles, Device *tile_device)
{
  /* Fill tile information. */
  for (int i = 0; i < 9; i++) {
    if (i == 4) {
      continue;
    }

    int dx = (i % 3) - 1;
    int dy = (i / 3) - 1;
    tiles[i].x = clamp(tiles[4].x + dx * denoiser->tile_size.x, 0, image.width);
    tiles[i].w = clamp(tiles[4].x + (dx + 1) * denoiser->tile_size.x, 0, image.width) - tiles[i].x;
    tiles[i].y = clamp(tiles[4].y + dy * denoiser->tile_size.y, 0, image.height);
    tiles[i].h = clamp(tiles[4].y + (dy + 1) * denoiser->tile_size.y, 0, image.height) -
                 tiles[i].y;

    tiles[i].buffer = tiles[4].buffer;
    tiles[i].offset = tiles[4].offset;
    tiles[i].stride = image.width;
  }

  /* Allocate output buffer. */
  device_vector<float> *output_mem = new device_vector<float>(
      tile_device, "denoising_output", MEM_READ_WRITE);
  output_mem->alloc(OUTPUT_NUM_CHANNELS * tiles[4].w * tiles[4].h);

  /* Fill output buffer with noisy image, assumed by kernel_filter_finalize
   * when skipping denoising of some pixels. */
  float *result = output_mem->data();
  float *in = &image.pixels[image.num_channels * (tiles[4].y * image.width + tiles[4].x)];

  const DenoiseImageLayer &layer = image.layers[current_layer];
  const int *input_to_image_channel = layer.input_to_image_channel.data();

  for (int y = 0; y < tiles[4].h; y++) {
    for (int x = 0; x < tiles[4].w; x++, result += OUTPUT_NUM_CHANNELS) {
      for (int i = 0; i < OUTPUT_NUM_CHANNELS; i++) {
        result[i] = in[image.num_channels * x + input_to_image_channel[INPUT_NOISY_IMAGE + i]];
      }
    }
    in += image.num_channels * image.width;
  }

  output_mem->copy_to_device();

  /* Fill output tile info. */
  tiles[9] = tiles[4];
  tiles[9].buffer = output_mem->device_pointer;
  tiles[9].stride = tiles[9].w;
  tiles[9].offset -= tiles[9].x + tiles[9].y * tiles[9].stride;

  thread_scoped_lock output_lock(output_mutex);
  assert(output_pixels.count(tiles[4].tile_index) == 0);
  output_pixels[tiles[9].tile_index] = output_mem;
}

void DenoiseTask::unmap_neighboring_tiles(RenderTile *tiles)
{
  thread_scoped_lock output_lock(output_mutex);
  assert(output_pixels.count(tiles[4].tile_index) == 1);
  device_vector<float> *output_mem = output_pixels[tiles[9].tile_index];
  output_pixels.erase(tiles[4].tile_index);
  output_lock.unlock();

  /* Copy denoised pixels from device. */
  output_mem->copy_from_device(0, OUTPUT_NUM_CHANNELS * tiles[9].w, tiles[9].h);

  float *result = output_mem->data();
  float *out = &image.pixels[image.num_channels * (tiles[9].y * image.width + tiles[9].x)];

  const DenoiseImageLayer &layer = image.layers[current_layer];
  const int *output_to_image_channel = layer.output_to_image_channel.data();

  for (int y = 0; y < tiles[9].h; y++) {
    for (int x = 0; x < tiles[9].w; x++, result += OUTPUT_NUM_CHANNELS) {
      for (int i = 0; i < OUTPUT_NUM_CHANNELS; i++) {
        out[image.num_channels * x + output_to_image_channel[i]] = result[i];
      }
    }
    out += image.num_channels * image.width;
  }

  /* Free device buffer. */
  output_mem->free();
  delete output_mem;
}

void DenoiseTask::release_tile()
{
}

bool DenoiseTask::get_cancel()
{
  return false;
}

void DenoiseTask::create_task(DeviceTask &task)
{
  /* Callback functions. */
  task.acquire_tile = function_bind(&DenoiseTask::acquire_tile, this, device, _1, _2);
  task.map_neighbor_tiles = function_bind(&DenoiseTask::map_neighboring_tiles, this, _1, _2);
  task.unmap_neighbor_tiles = function_bind(&DenoiseTask::unmap_neighboring_tiles, this, _1);
  task.release_tile = function_bind(&DenoiseTask::release_tile, this);
  task.get_cancel = function_bind(&DenoiseTask::get_cancel, this);

  /* Denoising parameters. */
  task.denoising = denoiser->params;
  task.denoising.type = DENOISER_NLM;
  task.denoising.use = true;
  task.denoising.store_passes = false;
  task.denoising_from_render = false;

  task.denoising_frames.resize(neighbor_frames.size());
  for (int i = 0; i < neighbor_frames.size(); i++) {
    task.denoising_frames[i] = neighbor_frames[i] - frame;
  }

  /* Buffer parameters. */
  task.pass_stride = INPUT_NUM_CHANNELS;
  task.target_pass_stride = OUTPUT_NUM_CHANNELS;
  task.pass_denoising_data = 0;
  task.pass_denoising_clean = -1;
  task.frame_stride = image.width * image.height * INPUT_NUM_CHANNELS;

  /* Create tiles. */
  thread_scoped_lock tile_lock(tiles_mutex);
  thread_scoped_lock output_lock(output_mutex);

  tiles.clear();
  assert(output_pixels.empty());
  output_pixels.clear();

  int tiles_x = divide_up(image.width, denoiser->tile_size.x);
  int tiles_y = divide_up(image.height, denoiser->tile_size.y);

  for (int ty = 0; ty < tiles_y; ty++) {
    for (int tx = 0; tx < tiles_x; tx++) {
      RenderTile tile;
      tile.x = tx * denoiser->tile_size.x;
      tile.y = ty * denoiser->tile_size.y;
      tile.w = min(image.width - tile.x, denoiser->tile_size.x);
      tile.h = min(image.height - tile.y, denoiser->tile_size.y);
      tile.start_sample = 0;
      tile.num_samples = image.layers[current_layer].samples;
      tile.sample = 0;
      tile.offset = 0;
      tile.stride = image.width;
      tile.tile_index = ty * tiles_x + tx;
      tile.task = RenderTile::DENOISE;
      tile.buffers = NULL;
      tile.buffer = input_pixels.device_pointer;
      tiles.push_back(tile);
    }
  }

  num_tiles = tiles.size();
}

/* Denoiser Operations */

bool DenoiseTask::load_input_pixels(int layer)
{
  int w = image.width;
  int h = image.height;
  int num_pixels = image.width * image.height;
  int frame_stride = num_pixels * INPUT_NUM_CHANNELS;

  /* Load center image */
  DenoiseImageLayer &image_layer = image.layers[layer];

  float *buffer_data = input_pixels.data();
  image.read_pixels(image_layer, buffer_data);
  buffer_data += frame_stride;

  /* Load neighbor images */
  for (int i = 0; i < image.in_neighbors.size(); i++) {
    if (!image.read_neighbor_pixels(i, image_layer, buffer_data)) {
      error = "Failed to read neighbor frame pixels";
      return false;
    }
    buffer_data += frame_stride;
  }

  /* Preprocess */
  buffer_data = input_pixels.data();
  for (int neighbor = 0; neighbor < image.in_neighbors.size() + 1; neighbor++) {
    /* Clamp */
    if (denoiser->params.clamp_input) {
      for (int i = 0; i < num_pixels * INPUT_NUM_CHANNELS; i++) {
        buffer_data[i] = clamp(buffer_data[i], -1e8f, 1e8f);
      }
    }

    /* Box blur */
    int r = 5 * denoiser->params.radius;
    float *data = buffer_data + 14;
    array<float> temp(num_pixels);

    for (int y = 0; y < h; y++) {
      for (int x = 0; x < w; x++) {
        int n = 0;
        float sum = 0.0f;
        for (int dx = max(x - r, 0); dx < min(x + r + 1, w); dx++, n++) {
          sum += data[INPUT_NUM_CHANNELS * (y * w + dx)];
        }
        temp[y * w + x] = sum / n;
      }
    }

    for (int y = 0; y < h; y++) {
      for (int x = 0; x < w; x++) {
        int n = 0;
        float sum = 0.0f;

        for (int dy = max(y - r, 0); dy < min(y + r + 1, h); dy++, n++) {
          sum += temp[dy * w + x];
        }

        data[INPUT_NUM_CHANNELS * (y * w + x)] = sum / n;
      }
    }

    /* Highlight compression */
    data = buffer_data + 8;
    for (int y = 0; y < h; y++) {
      for (int x = 0; x < w; x++) {
        int idx = INPUT_NUM_CHANNELS * (y * w + x);
        float3 color = make_float3(data[idx], data[idx + 1], data[idx + 2]);
        color = color_highlight_compress(color, NULL);
        data[idx] = color.x;
        data[idx + 1] = color.y;
        data[idx + 2] = color.z;
      }
    }

    buffer_data += frame_stride;
  }

  /* Copy to device */
  input_pixels.copy_to_device();

  return true;
}

/* Task stages */

bool DenoiseTask::load()
{
  string center_filepath = denoiser->input[frame];
  if (!image.load(center_filepath, error)) {
    return false;
  }

  if (!image.load_neighbors(denoiser->input, neighbor_frames, error)) {
    return false;
  }

  if (image.layers.empty()) {
    error = "No image layers found to denoise in " + center_filepath;
    return false;
  }

  /* Allocate device buffer. */
  int num_frames = image.in_neighbors.size() + 1;
  input_pixels.alloc(image.width * INPUT_NUM_CHANNELS, image.height * num_frames);
  input_pixels.zero_to_device();

  /* Read pixels for first layer. */
  current_layer = 0;
  if (!load_input_pixels(current_layer)) {
    return false;
  }

  return true;
}

bool DenoiseTask::exec()
{
  for (current_layer = 0; current_layer < image.layers.size(); current_layer++) {
    /* Read pixels for secondary layers, first was already loaded. */
    if (current_layer > 0) {
      if (!load_input_pixels(current_layer)) {
        return false;
      }
    }

    /* Run task on device. */
    DeviceTask task(DeviceTask::RENDER);
    create_task(task);
    device->task_add(task);
    device->task_wait();

    printf("\n");
  }

  return true;
}

bool DenoiseTask::save()
{
  bool ok = image.save_output(denoiser->output[frame], error);
  free();
  return ok;
}

void DenoiseTask::free()
{
  image.free();
  input_pixels.free();
  assert(output_pixels.empty());
}

/* Denoise Image Storage */

DenoiseImage::DenoiseImage()
{
  width = 0;
  height = 0;
  num_channels = 0;
  samples = 0;
}

DenoiseImage::~DenoiseImage()
{
  free();
}

void DenoiseImage::close_input()
{
  in_neighbors.clear();
}

void DenoiseImage::free()
{
  close_input();
  pixels.clear();
}

bool DenoiseImage::parse_channels(const ImageSpec &in_spec, string &error)
{
  const std::vector<string> &channels = in_spec.channelnames;
  const ParamValue *multiview = in_spec.find_attribute("multiView");
  const bool multiview_channels = (multiview && multiview->type().basetype == TypeDesc::STRING &&
                                   multiview->type().arraylen >= 2);

  layers.clear();

  /* Loop over all the channels in the file, parse their name and sort them
   * by RenderLayer.
   * Channels that can't be parsed are directly passed through to the output. */
  map<string, DenoiseImageLayer> file_layers;
  for (int i = 0; i < channels.size(); i++) {
    string layer, pass, channel;
    if (parse_channel_name(channels[i], layer, pass, channel, multiview_channels)) {
      file_layers[layer].channels.push_back(pass + "." + channel);
      file_layers[layer].layer_to_image_channel.push_back(i);
    }
  }

  /* Loop over all detected RenderLayers, check whether they contain a full set of input channels.
   * Any channels that won't be processed internally are also passed through. */
  for (map<string, DenoiseImageLayer>::iterator i = file_layers.begin(); i != file_layers.end();
       ++i) {
    const string &name = i->first;
    DenoiseImageLayer &layer = i->second;

    /* Check for full pass set. */
    if (!layer.detect_denoising_channels()) {
      continue;
    }

    layer.name = name;
    layer.samples = samples;

    /* If the sample value isn't set yet, check if there is a layer-specific one in the input file.
     */
    if (layer.samples < 1) {
      string sample_string = in_spec.get_string_attribute("cycles." + name + ".samples", "");
      if (sample_string != "") {
        if (!sscanf(sample_string.c_str(), "%d", &layer.samples)) {
          error = "Failed to parse samples metadata: " + sample_string;
          return false;
        }
      }
    }

    if (layer.samples < 1) {
      error = string_printf(
          "No sample number specified in the file for layer %s or on the command line",
          name.c_str());
      return false;
    }

    layers.push_back(layer);
  }

  return true;
}

void DenoiseImage::read_pixels(const DenoiseImageLayer &layer, float *input_pixels)
{
  /* Pixels from center file have already been loaded into pixels.
   * We copy a subset into the device input buffer with channels reshuffled. */
  const int *input_to_image_channel = layer.input_to_image_channel.data();

  for (int i = 0; i < width * height; i++) {
    for (int j = 0; j < INPUT_NUM_CHANNELS; j++) {
      int image_channel = input_to_image_channel[j];
      input_pixels[i * INPUT_NUM_CHANNELS + j] =
          pixels[((size_t)i) * num_channels + image_channel];
    }
  }
}

bool DenoiseImage::read_neighbor_pixels(int neighbor,
                                        const DenoiseImageLayer &layer,
                                        float *input_pixels)
{
  /* Load pixels from neighboring frames, and copy them into device buffer
   * with channels reshuffled. */
  size_t num_pixels = (size_t)width * (size_t)height;
  array<float> neighbor_pixels(num_pixels * num_channels);
  if (!in_neighbors[neighbor]->read_image(TypeDesc::FLOAT, neighbor_pixels.data())) {
    return false;
  }

  const int *input_to_image_channel = layer.neighbor_input_to_image_channel[neighbor].data();

  for (int i = 0; i < width * height; i++) {
    for (int j = 0; j < INPUT_NUM_CHANNELS; j++) {
      int image_channel = input_to_image_channel[j];
      input_pixels[i * INPUT_NUM_CHANNELS + j] =
          neighbor_pixels[((size_t)i) * num_channels + image_channel];
    }
  }

  return true;
}

bool DenoiseImage::load(const string &in_filepath, string &error)
{
  if (!Filesystem::is_regular(in_filepath)) {
    error = "Couldn't find file: " + in_filepath;
    return false;
  }

  unique_ptr<ImageInput> in(ImageInput::open(in_filepath));
  if (!in) {
    error = "Couldn't open file: " + in_filepath;
    return false;
  }

  in_spec = in->spec();
  width = in_spec.width;
  height = in_spec.height;
  num_channels = in_spec.nchannels;

  if (!parse_channels(in_spec, error)) {
    return false;
  }

  if (layers.size() == 0) {
    error = "Could not find a render layer containing denoising info";
    return false;
  }

  size_t num_pixels = (size_t)width * (size_t)height;
  pixels.resize(num_pixels * num_channels);

  /* Read all channels into buffer. Reading all channels at once is faster
   * than individually due to interleaved EXR channel storage. */
  if (!in->read_image(TypeDesc::FLOAT, pixels.data())) {
    error = "Failed to read image: " + in_filepath;
    return false;
  }

  return true;
}

bool DenoiseImage::load_neighbors(const vector<string> &filepaths,
                                  const vector<int> &frames,
                                  string &error)
{
  if (frames.size() > DENOISE_MAX_FRAMES - 1) {
    error = string_printf("Maximum number of neighbors (%d) exceeded\n", DENOISE_MAX_FRAMES - 1);
    return false;
  }

  for (int neighbor = 0; neighbor < frames.size(); neighbor++) {
    int frame = frames[neighbor];
    const string &filepath = filepaths[frame];

    if (!Filesystem::is_regular(filepath)) {
      error = "Couldn't find neighbor frame: " + filepath;
      return false;
    }

    unique_ptr<ImageInput> in_neighbor(ImageInput::open(filepath));
    if (!in_neighbor) {
      error = "Couldn't open neighbor frame: " + filepath;
      return false;
    }

    const ImageSpec &neighbor_spec = in_neighbor->spec();
    if (neighbor_spec.width != width || neighbor_spec.height != height) {
      error = "Neighbor frame has different dimensions: " + filepath;
      return false;
    }

    foreach (DenoiseImageLayer &layer, layers) {
      if (!layer.match_channels(neighbor, in_spec.channelnames, neighbor_spec.channelnames)) {
        error = "Neighbor frame misses denoising data passes: " + filepath;
        return false;
      }
    }

    in_neighbors.push_back(std::move(in_neighbor));
  }

  return true;
}

bool DenoiseImage::save_output(const string &out_filepath, string &error)
{
  /* Save image with identical dimensions, channels and metadata. */
  ImageSpec out_spec = in_spec;

  /* Ensure that the output frame contains sample information even if the input didn't. */
  for (int i = 0; i < layers.size(); i++) {
    string name = "cycles." + layers[i].name + ".samples";
    if (!out_spec.find_attribute(name, TypeDesc::STRING)) {
      out_spec.attribute(name, TypeDesc::STRING, string_printf("%d", layers[i].samples));
    }
  }

  /* We don't need input anymore at this point, and will possibly
   * overwrite the same file. */
  close_input();

  /* Write to temporary file path, so we denoise images in place and don't
   * risk destroying files when something goes wrong in file saving. */
  string extension = OIIO::Filesystem::extension(out_filepath);
  string unique_name = ".denoise-tmp-" + OIIO::Filesystem::unique_path();
  string tmp_filepath = out_filepath + unique_name + extension;
  unique_ptr<ImageOutput> out(ImageOutput::create(tmp_filepath));

  if (!out) {
    error = "Failed to open temporary file " + tmp_filepath + " for writing";
    return false;
  }

  /* Open temporary file and write image buffers. */
  if (!out->open(tmp_filepath, out_spec)) {
    error = "Failed to open file " + tmp_filepath + " for writing: " + out->geterror();
    return false;
  }

  bool ok = true;
  if (!out->write_image(TypeDesc::FLOAT, pixels.data())) {
    error = "Failed to write to file " + tmp_filepath + ": " + out->geterror();
    ok = false;
  }

  if (!out->close()) {
    error = "Failed to save to file " + tmp_filepath + ": " + out->geterror();
    ok = false;
  }

  out.reset();

  /* Copy temporary file to outputput filepath. */
  string rename_error;
  if (ok && !OIIO::Filesystem::rename(tmp_filepath, out_filepath, rename_error)) {
    error = "Failed to move denoised image to " + out_filepath + ": " + rename_error;
    ok = false;
  }

  if (!ok) {
    OIIO::Filesystem::remove(tmp_filepath);
  }

  return ok;
}

/* File pattern handling and outer loop over frames */

Denoiser::Denoiser(DeviceInfo &device_info)
{
  samples_override = 0;
  tile_size = make_int2(64, 64);

  num_frames = 0;

  /* Initialize task scheduler. */
  TaskScheduler::init();

  /* Initialize device. */
  device = Device::create(device_info, stats, profiler, true);

  DeviceRequestedFeatures req;
  req.use_denoising = true;
  device->load_kernels(req);
}

Denoiser::~Denoiser()
{
  delete device;
  TaskScheduler::exit();
}

bool Denoiser::run()
{
  assert(input.size() == output.size());

  num_frames = output.size();

  for (int frame = 0; frame < num_frames; frame++) {
    /* Skip empty output paths. */
    if (output[frame].empty()) {
      continue;
    }

    /* Determine neighbor frame numbers that should be used for filtering. */
    vector<int> neighbor_frames;
    for (int f = frame - params.neighbor_frames; f <= frame + params.neighbor_frames; f++) {
      if (f >= 0 && f < num_frames && f != frame) {
        neighbor_frames.push_back(f);
      }
    }

    /* Execute task. */
    DenoiseTask task(device, this, frame, neighbor_frames);
    if (!task.load()) {
      error = task.error;
      return false;
    }

    if (!task.exec()) {
      error = task.error;
      return false;
    }

    if (!task.save()) {
      error = task.error;
      return false;
    }

    task.free();
  }

  return true;
}

CCL_NAMESPACE_END