Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_volume.cpp « render « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 70189ea4812969ae05178059556ef53964a9ba8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
 * Copyright 2011-2016 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "render/attribute.h"
#include "render/image_vdb.h"
#include "render/mesh.h"
#include "render/scene.h"

#ifdef WITH_OPENVDB
#  include <openvdb/tools/Dense.h>
#  include <openvdb/tools/GridTransformer.h>
#  include <openvdb/tools/Morphology.h>
#endif

#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_openvdb.h"
#include "util/util_progress.h"
#include "util/util_types.h"

CCL_NAMESPACE_BEGIN

struct QuadData {
  int v0, v1, v2, v3;

  float3 normal;
};

enum {
  QUAD_X_MIN = 0,
  QUAD_X_MAX = 1,
  QUAD_Y_MIN = 2,
  QUAD_Y_MAX = 3,
  QUAD_Z_MIN = 4,
  QUAD_Z_MAX = 5,
};

const int quads_indices[6][4] = {
    /* QUAD_X_MIN */
    {4, 0, 3, 7},
    /* QUAD_X_MAX */
    {1, 5, 6, 2},
    /* QUAD_Y_MIN */
    {4, 5, 1, 0},
    /* QUAD_Y_MAX */
    {3, 2, 6, 7},
    /* QUAD_Z_MIN */
    {0, 1, 2, 3},
    /* QUAD_Z_MAX */
    {5, 4, 7, 6},
};

const float3 quads_normals[6] = {
    /* QUAD_X_MIN */
    make_float3(-1.0f, 0.0f, 0.0f),
    /* QUAD_X_MAX */
    make_float3(1.0f, 0.0f, 0.0f),
    /* QUAD_Y_MIN */
    make_float3(0.0f, -1.0f, 0.0f),
    /* QUAD_Y_MAX */
    make_float3(0.0f, 1.0f, 0.0f),
    /* QUAD_Z_MIN */
    make_float3(0.0f, 0.0f, -1.0f),
    /* QUAD_Z_MAX */
    make_float3(0.0f, 0.0f, 1.0f),
};

static int add_vertex(int3 v,
                      vector<int3> &vertices,
                      int3 res,
                      unordered_map<size_t, int> &used_verts)
{
  size_t vert_key = v.x + v.y * (res.x + 1) + v.z * (res.x + 1) * (res.y + 1);
  unordered_map<size_t, int>::iterator it = used_verts.find(vert_key);

  if (it != used_verts.end()) {
    return it->second;
  }

  int vertex_offset = vertices.size();
  used_verts[vert_key] = vertex_offset;
  vertices.push_back(v);
  return vertex_offset;
}

static void create_quad(int3 corners[8],
                        vector<int3> &vertices,
                        vector<QuadData> &quads,
                        int3 res,
                        unordered_map<size_t, int> &used_verts,
                        int face_index)
{
  QuadData quad;
  quad.v0 = add_vertex(corners[quads_indices[face_index][0]], vertices, res, used_verts);
  quad.v1 = add_vertex(corners[quads_indices[face_index][1]], vertices, res, used_verts);
  quad.v2 = add_vertex(corners[quads_indices[face_index][2]], vertices, res, used_verts);
  quad.v3 = add_vertex(corners[quads_indices[face_index][3]], vertices, res, used_verts);
  quad.normal = quads_normals[face_index];

  quads.push_back(quad);
}

/* Create a mesh from a volume.
 *
 * The way the algorithm works is as follows:
 *
 * - The topologies of input OpenVDB grids are merged into a temporary grid.
 * - Voxels of the temporary grid are dilated to account for the padding necessary for volume
 * sampling.
 * - Quads are created on the boundary between active and inactive leaf nodes of the temporary
 * grid.
 */
class VolumeMeshBuilder {
 public:
#ifdef WITH_OPENVDB
  /* use a MaskGrid to store the topology to save memory */
  openvdb::MaskGrid::Ptr topology_grid;
  openvdb::CoordBBox bbox;
#endif
  bool first_grid;

  VolumeMeshBuilder();

#ifdef WITH_OPENVDB
  void add_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping);
#endif

  void add_padding(int pad_size);

  void create_mesh(vector<float3> &vertices,
                   vector<int> &indices,
                   vector<float3> &face_normals,
                   const float face_overlap_avoidance);

  void generate_vertices_and_quads(vector<int3> &vertices_is, vector<QuadData> &quads);

  void convert_object_space(const vector<int3> &vertices,
                            vector<float3> &out_vertices,
                            const float face_overlap_avoidance);

  void convert_quads_to_tris(const vector<QuadData> &quads,
                             vector<int> &tris,
                             vector<float3> &face_normals);

  bool empty_grid() const;

#ifdef WITH_OPENVDB
  template <typename GridType>
  void merge_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping)
  {
    typename GridType::ConstPtr typed_grid = openvdb::gridConstPtrCast<GridType>(grid);

    if (do_clipping) {
      using ValueType = typename GridType::ValueType;
      typename GridType::Ptr copy = typed_grid->deepCopy();
      typename GridType::ValueOnIter iter = copy->beginValueOn();

      for (; iter; ++iter) {
        if (iter.getValue() < ValueType(volume_clipping)) {
          iter.setValueOff();
        }
      }

      typed_grid = copy;
    }

    topology_grid->topologyUnion(*typed_grid);
  }
#endif
};

VolumeMeshBuilder::VolumeMeshBuilder()
{
  first_grid = true;
}

#ifdef WITH_OPENVDB
void VolumeMeshBuilder::add_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping)
{
  /* set the transform of our grid from the first one */
  if (first_grid) {
    topology_grid = openvdb::MaskGrid::create();
    topology_grid->setTransform(grid->transform().copy());
    first_grid = false;
  }
  /* if the transforms do not match, we need to resample one of the grids so that
   * its index space registers with that of the other, here we resample our mask
   * grid so memory usage is kept low */
  else if (topology_grid->transform() != grid->transform()) {
    openvdb::MaskGrid::Ptr temp_grid = topology_grid->copyWithNewTree();
    temp_grid->setTransform(grid->transform().copy());
    openvdb::tools::resampleToMatch<openvdb::tools::BoxSampler>(*topology_grid, *temp_grid);
    topology_grid = temp_grid;
    topology_grid->setTransform(grid->transform().copy());
  }

  if (grid->isType<openvdb::FloatGrid>()) {
    merge_grid<openvdb::FloatGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Vec3fGrid>()) {
    merge_grid<openvdb::Vec3fGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Vec4fGrid>()) {
    merge_grid<openvdb::Vec4fGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::BoolGrid>()) {
    merge_grid<openvdb::BoolGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::DoubleGrid>()) {
    merge_grid<openvdb::DoubleGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Int32Grid>()) {
    merge_grid<openvdb::Int32Grid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Int64Grid>()) {
    merge_grid<openvdb::Int64Grid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Vec3IGrid>()) {
    merge_grid<openvdb::Vec3IGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::Vec3dGrid>()) {
    merge_grid<openvdb::Vec3dGrid>(grid, do_clipping, volume_clipping);
  }
  else if (grid->isType<openvdb::MaskGrid>()) {
    topology_grid->topologyUnion(*openvdb::gridConstPtrCast<openvdb::MaskGrid>(grid));
  }
}
#endif

void VolumeMeshBuilder::add_padding(int pad_size)
{
#ifdef WITH_OPENVDB
  openvdb::tools::dilateVoxels(topology_grid->tree(), pad_size);
#else
  (void)pad_size;
#endif
}

void VolumeMeshBuilder::create_mesh(vector<float3> &vertices,
                                    vector<int> &indices,
                                    vector<float3> &face_normals,
                                    const float face_overlap_avoidance)
{
  /* We create vertices in index space (is), and only convert them to object
   * space when done. */
  vector<int3> vertices_is;
  vector<QuadData> quads;

  generate_vertices_and_quads(vertices_is, quads);

  convert_object_space(vertices_is, vertices, face_overlap_avoidance);

  convert_quads_to_tris(quads, indices, face_normals);
}

void VolumeMeshBuilder::generate_vertices_and_quads(vector<ccl::int3> &vertices_is,
                                                    vector<QuadData> &quads)
{
#ifdef WITH_OPENVDB
  const openvdb::MaskGrid::TreeType &tree = topology_grid->tree();
  tree.evalLeafBoundingBox(bbox);

  const int3 resolution = make_int3(bbox.dim().x(), bbox.dim().y(), bbox.dim().z());

  unordered_map<size_t, int> used_verts;

  for (auto iter = tree.cbeginLeaf(); iter; ++iter) {
    openvdb::CoordBBox leaf_bbox = iter->getNodeBoundingBox();
    /* +1 to convert from exclusive to include bounds. */
    leaf_bbox.max() = leaf_bbox.max().offsetBy(1);

    int3 min = make_int3(leaf_bbox.min().x(), leaf_bbox.min().y(), leaf_bbox.min().z());
    int3 max = make_int3(leaf_bbox.max().x(), leaf_bbox.max().y(), leaf_bbox.max().z());

    int3 corners[8] = {
        make_int3(min[0], min[1], min[2]),
        make_int3(max[0], min[1], min[2]),
        make_int3(max[0], max[1], min[2]),
        make_int3(min[0], max[1], min[2]),
        make_int3(min[0], min[1], max[2]),
        make_int3(max[0], min[1], max[2]),
        make_int3(max[0], max[1], max[2]),
        make_int3(min[0], max[1], max[2]),
    };

    /* Only create a quad if on the border between an active and an inactive leaf.
     *
     * We verify that a leaf exists by probing a coordinate that is at its center,
     * to do so we compute the center of the current leaf and offset this coordinate
     * by the size of a leaf in each direction.
     */
    static const int LEAF_DIM = openvdb::MaskGrid::TreeType::LeafNodeType::DIM;
    auto center = leaf_bbox.min() + openvdb::Coord(LEAF_DIM / 2);

    if (!tree.probeLeaf(openvdb::Coord(center.x() - LEAF_DIM, center.y(), center.z()))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_X_MIN);
    }

    if (!tree.probeLeaf(openvdb::Coord(center.x() + LEAF_DIM, center.y(), center.z()))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_X_MAX);
    }

    if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y() - LEAF_DIM, center.z()))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Y_MIN);
    }

    if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y() + LEAF_DIM, center.z()))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Y_MAX);
    }

    if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y(), center.z() - LEAF_DIM))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Z_MIN);
    }

    if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y(), center.z() + LEAF_DIM))) {
      create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Z_MAX);
    }
  }
#else
  (void)vertices_is;
  (void)quads;
#endif
}

void VolumeMeshBuilder::convert_object_space(const vector<int3> &vertices,
                                             vector<float3> &out_vertices,
                                             const float face_overlap_avoidance)
{
#ifdef WITH_OPENVDB
  /* compute the offset for the face overlap avoidance */
  bbox = topology_grid->evalActiveVoxelBoundingBox();
  openvdb::Coord dim = bbox.dim();

  float3 cell_size = make_float3(1.0f / dim.x(), 1.0f / dim.y(), 1.0f / dim.z());
  float3 point_offset = cell_size * face_overlap_avoidance;

  out_vertices.reserve(vertices.size());

  for (size_t i = 0; i < vertices.size(); ++i) {
    openvdb::math::Vec3d p = topology_grid->indexToWorld(
        openvdb::math::Vec3d(vertices[i].x, vertices[i].y, vertices[i].z));
    float3 vertex = make_float3((float)p.x(), (float)p.y(), (float)p.z());
    out_vertices.push_back(vertex + point_offset);
  }
#else
  (void)vertices;
  (void)out_vertices;
  (void)face_overlap_avoidance;
#endif
}

void VolumeMeshBuilder::convert_quads_to_tris(const vector<QuadData> &quads,
                                              vector<int> &tris,
                                              vector<float3> &face_normals)
{
  int index_offset = 0;
  tris.resize(quads.size() * 6);
  face_normals.reserve(quads.size() * 2);

  for (size_t i = 0; i < quads.size(); ++i) {
    tris[index_offset++] = quads[i].v0;
    tris[index_offset++] = quads[i].v2;
    tris[index_offset++] = quads[i].v1;

    face_normals.push_back(quads[i].normal);

    tris[index_offset++] = quads[i].v0;
    tris[index_offset++] = quads[i].v3;
    tris[index_offset++] = quads[i].v2;

    face_normals.push_back(quads[i].normal);
  }
}

bool VolumeMeshBuilder::empty_grid() const
{
#ifdef WITH_OPENVDB
  return !topology_grid || topology_grid->tree().leafCount() == 0;
#else
  return true;
#endif
}

#ifdef WITH_OPENVDB
template<typename GridType>
static openvdb::GridBase::ConstPtr openvdb_grid_from_device_texture(device_texture *image_memory,
                                                                    float volume_clipping,
                                                                    Transform transform_3d)
{
  using ValueType = typename GridType::ValueType;

  openvdb::CoordBBox dense_bbox(0,
                                0,
                                0,
                                image_memory->data_width - 1,
                                image_memory->data_height - 1,
                                image_memory->data_depth - 1);
  openvdb::tools::Dense<ValueType, openvdb::tools::MemoryLayout::LayoutXYZ> dense(
      dense_bbox, static_cast<ValueType *>(image_memory->host_pointer));

  typename GridType::Ptr sparse = GridType::create(ValueType(0.0f));
  openvdb::tools::copyFromDense(dense, *sparse, ValueType(volume_clipping));

  /* copyFromDense will remove any leaf node that contains constant data and replace it with a tile,
   * however, we need to preserve the leaves in order to generate the mesh, so revoxelize the leaves
   * that were pruned. This should not affect areas that were skipped due to the volume_clipping parameter. */
  sparse->tree().voxelizeActiveTiles();

  /* Compute index to world matrix. */
  float3 voxel_size = make_float3(1.0f / image_memory->data_width, 1.0f / image_memory->data_height, 1.0f / image_memory->data_depth);

  transform_3d = transform_inverse(transform_3d);

  openvdb::Mat4R index_to_world_mat((double)(voxel_size.x * transform_3d[0][0]), 0.0, 0.0, 0.0,
                           0.0, (double)(voxel_size.y * transform_3d[1][1]), 0.0, 0.0,
                           0.0, 0.0, (double)(voxel_size.z * transform_3d[2][2]), 0.0,
                           (double)transform_3d[0][3], (double)transform_3d[1][3], (double)transform_3d[2][3], 1.0);

  openvdb::math::Transform::Ptr index_to_world_tfm = openvdb::math::Transform::createLinearTransform(index_to_world_mat);

  sparse->setTransform(index_to_world_tfm);

  return sparse;
}
#endif

/* ************************************************************************** */

void GeometryManager::create_volume_mesh(Mesh *mesh, Progress &progress)
{
  string msg = string_printf("Computing Volume Mesh %s", mesh->name.c_str());
  progress.set_status("Updating Mesh", msg);

  VolumeMeshBuilder builder;

#ifdef WITH_OPENVDB
  foreach (Attribute &attr, mesh->attributes.attributes) {
    if (attr.element != ATTR_ELEMENT_VOXEL) {
      continue;
    }

    bool do_clipping = false;

    ImageHandle &handle = attr.data_voxel();

    /* Try building from OpenVDB grid directly. */
    VDBImageLoader *vdb_loader = handle.vdb_loader();
    openvdb::GridBase::ConstPtr grid;
    if (vdb_loader) {
      grid = vdb_loader->get_grid();

      /* If building from an OpenVDB grid, we need to manually clip the values. */
      do_clipping = true;
    }

    /* Else fall back to creating an OpenVDB grid from the dense volume data. */
    if (!grid) {
      device_texture *image_memory = handle.image_memory();

      if (image_memory->data_elements == 1) {
        grid = openvdb_grid_from_device_texture<openvdb::FloatGrid>(image_memory,
                                                                    mesh->volume_clipping,
                                                                    handle.metadata().transform_3d);
      }
      else if (image_memory->data_elements == 3) {
        grid = openvdb_grid_from_device_texture<openvdb::Vec3fGrid>(image_memory,
                                                                    mesh->volume_clipping,
                                                                    handle.metadata().transform_3d);
      }
      else if (image_memory->data_elements == 4) {
        grid = openvdb_grid_from_device_texture<openvdb::Vec4fGrid>(image_memory,
                                                                    mesh->volume_clipping,
                                                                    handle.metadata().transform_3d);
      }
    }

    if (grid) {
      builder.add_grid(grid, do_clipping, mesh->volume_clipping);
    }
  }
#endif

  if (builder.empty_grid()) {
    return;
  }

  /* Compute padding. */
  Shader *volume_shader = NULL;
  int pad_size = 0;

  foreach (Shader *shader, mesh->used_shaders) {
    if (!shader->has_volume) {
      continue;
    }

    volume_shader = shader;

    if (shader->volume_interpolation_method == VOLUME_INTERPOLATION_LINEAR) {
      pad_size = max(1, pad_size);
    }
    else if (shader->volume_interpolation_method == VOLUME_INTERPOLATION_CUBIC) {
      pad_size = max(2, pad_size);
    }

    break;
  }

  if (!volume_shader) {
    return;
  }

  builder.add_padding(pad_size);

  /* Slightly offset vertex coordinates to avoid overlapping faces with other
   * volumes or meshes. The proper solution would be to improve intersection in
   * the kernel to support robust handling of multiple overlapping faces or use
   * an all-hit intersection similar to shadows. */
  const float face_overlap_avoidance = 0.1f * hash_uint_to_float(hash_string(mesh->name.c_str()));

  /* Create mesh. */
  vector<float3> vertices;
  vector<int> indices;
  vector<float3> face_normals;
  builder.create_mesh(vertices, indices, face_normals, face_overlap_avoidance);

  mesh->clear(true);
  mesh->reserve_mesh(vertices.size(), indices.size() / 3);
  mesh->used_shaders.push_back(volume_shader);

  for (size_t i = 0; i < vertices.size(); ++i) {
    mesh->add_vertex(vertices[i]);
  }

  for (size_t i = 0; i < indices.size(); i += 3) {
    mesh->add_triangle(indices[i], indices[i + 1], indices[i + 2], 0, false);
  }

  Attribute *attr_fN = mesh->attributes.add(ATTR_STD_FACE_NORMAL);
  float3 *fN = attr_fN->data_float3();

  for (size_t i = 0; i < face_normals.size(); ++i) {
    fN[i] = face_normals[i];
  }

  /* Print stats. */
  VLOG(1) << "Memory usage volume mesh: "
          << ((vertices.size() + face_normals.size()) * sizeof(float3) +
              indices.size() * sizeof(int)) /
                 (1024.0 * 1024.0)
          << "Mb.";
}

CCL_NAMESPACE_END