Welcome to mirror list, hosted at ThFree Co, Russian Federation.

shader.cpp « render « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 708eeef3b50502945f42c47fb0aa8314b87dede1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "background.h"
#include "camera.h"
#include "device.h"
#include "graph.h"
#include "integrator.h"
#include "light.h"
#include "mesh.h"
#include "nodes.h"
#include "object.h"
#include "osl.h"
#include "scene.h"
#include "shader.h"
#include "svm.h"
#include "tables.h"

#include "util_foreach.h"

CCL_NAMESPACE_BEGIN

vector<float> ShaderManager::beckmann_table;

/* Beckmann sampling precomputed table, see bsdf_microfacet.h */

/* 2D slope distribution (alpha = 1.0) */
static float beckmann_table_P22(const float slope_x, const float slope_y)
{
	return expf(-(slope_x*slope_x + slope_y*slope_y));
}

/* maximal slope amplitude (range that contains 99.99% of the distribution) */
static float beckmann_table_slope_max()
{
	return 6.0;
}

/* Paper used: Importance Sampling Microfacet-Based BSDFs with the
 * Distribution of Visible Normals. Supplemental Material 2/2.
 *
 * http://hal.inria.fr/docs/01/00/66/20/ANNEX/supplemental2.pdf
 */
static void beckmann_table_rows(float *table, int row_from, int row_to)
{
	/* allocate temporary data */
	const int DATA_TMP_SIZE = 512;
	vector<double> slope_x(DATA_TMP_SIZE);
	vector<double> CDF_P22_omega_i(DATA_TMP_SIZE);

	/* loop over incident directions */
	for(int index_theta = row_from; index_theta < row_to; index_theta++) {
		/* incident vector */
		const float cos_theta = index_theta / (BECKMANN_TABLE_SIZE - 1.0f);
		const float sin_theta = safe_sqrtf(1.0f - cos_theta*cos_theta);

		/* for a given incident vector
		 * integrate P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
		slope_x[0] = (double)-beckmann_table_slope_max();
		CDF_P22_omega_i[0] = 0;

		for(int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x) {
			/* slope_x */
			slope_x[index_slope_x] = (double)(-beckmann_table_slope_max() + 2.0f * beckmann_table_slope_max() * index_slope_x/(DATA_TMP_SIZE - 1.0f));

			/* dot product with incident vector */
			float dot_product = fmaxf(0.0f, -(float)slope_x[index_slope_x]*sin_theta + cos_theta);
			/* marginalize P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
			float P22_omega_i = 0.0f;

			for(int j = 0; j < 100; ++j) {
				float slope_y = -beckmann_table_slope_max() + 2.0f * beckmann_table_slope_max() * j * (1.0f/99.0f);
				P22_omega_i += dot_product * beckmann_table_P22((float)slope_x[index_slope_x], slope_y);
			}

			/* CDF of P22_{omega_i}(x_slope, 1, 1), Eq. (10) */
			CDF_P22_omega_i[index_slope_x] = CDF_P22_omega_i[index_slope_x - 1] + (double)P22_omega_i;
		}

		/* renormalize CDF_P22_omega_i */
		for(int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x)
			CDF_P22_omega_i[index_slope_x] /= CDF_P22_omega_i[DATA_TMP_SIZE - 1];

		/* loop over random number U1 */
		int index_slope_x = 0;

		for(int index_U = 0; index_U < BECKMANN_TABLE_SIZE; ++index_U) {
			const double U = 0.0000001 + 0.9999998 * index_U / (double)(BECKMANN_TABLE_SIZE - 1);

			/* inverse CDF_P22_omega_i, solve Eq.(11) */
			while(CDF_P22_omega_i[index_slope_x] <= U)
				++index_slope_x;

			const double interp =
				(CDF_P22_omega_i[index_slope_x] - U) /
				(CDF_P22_omega_i[index_slope_x] - CDF_P22_omega_i[index_slope_x - 1]);

			/* store value */
			table[index_U + index_theta*BECKMANN_TABLE_SIZE] = (float)(
				interp * slope_x[index_slope_x - 1] +
				    (1.0 - interp) * slope_x[index_slope_x]);
		}
	}
}

static void beckmann_table_build(vector<float>& table)
{
	table.resize(BECKMANN_TABLE_SIZE*BECKMANN_TABLE_SIZE);

	/* multithreaded build */
	TaskPool pool;

	for(int i = 0; i < BECKMANN_TABLE_SIZE; i+=8)
		pool.push(function_bind(&beckmann_table_rows, &table[0], i, i+8));

	pool.wait_work();
}

/* Shader */

NODE_DEFINE(Shader)
{
	NodeType* type = NodeType::add("shader", create);

	SOCKET_BOOLEAN(use_mis, "Use MIS", true);
	SOCKET_BOOLEAN(use_transparent_shadow, "Use Transparent Shadow", true);
	SOCKET_BOOLEAN(heterogeneous_volume, "Heterogeneous Volume", true);

	static NodeEnum volume_sampling_method_enum;
	volume_sampling_method_enum.insert("distance", VOLUME_SAMPLING_DISTANCE);
	volume_sampling_method_enum.insert("equiangular", VOLUME_SAMPLING_EQUIANGULAR);
	volume_sampling_method_enum.insert("multiple_importance", VOLUME_SAMPLING_MULTIPLE_IMPORTANCE);
	SOCKET_ENUM(volume_sampling_method, "Volume Sampling Method", volume_sampling_method_enum, VOLUME_SAMPLING_DISTANCE);

	static NodeEnum volume_interpolation_method_enum;
	volume_interpolation_method_enum.insert("linear", VOLUME_INTERPOLATION_LINEAR);
	volume_interpolation_method_enum.insert("cubic", VOLUME_INTERPOLATION_CUBIC);
	SOCKET_ENUM(volume_interpolation_method, "Volume Interpolation Method", volume_interpolation_method_enum, VOLUME_INTERPOLATION_LINEAR);

	return type;
}

Shader::Shader()
: Node(node_type)
{
	pass_id = 0;

	graph = NULL;
	graph_bump = NULL;

	has_surface = false;
	has_surface_transparent = false;
	has_surface_emission = false;
	has_surface_bssrdf = false;
	has_volume = false;
	has_displacement = false;
	has_bssrdf_bump = false;
	has_surface_spatial_varying = false;
	has_volume_spatial_varying = false;
	has_object_dependency = false;
	has_integrator_dependency = false;

	id = -1;
	used = false;

	need_update = true;
	need_update_attributes = true;
}

Shader::~Shader()
{
	delete graph;
	delete graph_bump;
}

void Shader::set_graph(ShaderGraph *graph_)
{
	/* do this here already so that we can detect if mesh or object attributes
	 * are needed, since the node attribute callbacks check if their sockets
	 * are connected but proxy nodes should not count */
	if(graph_)
		graph_->remove_proxy_nodes();

	/* assign graph */
	delete graph;
	delete graph_bump;
	graph = graph_;
	graph_bump = NULL;
}

void Shader::tag_update(Scene *scene)
{
	/* update tag */
	need_update = true;
	scene->shader_manager->need_update = true;

	/* if the shader previously was emissive, update light distribution,
	 * if the new shader is emissive, a light manager update tag will be
	 * done in the shader manager device update. */
	if(use_mis && has_surface_emission)
		scene->light_manager->need_update = true;

	/* quick detection of which kind of shaders we have to avoid loading
	 * e.g. surface attributes when there is only a volume shader. this could
	 * be more fine grained but it's better than nothing */
	OutputNode *output = graph->output();
	bool prev_has_volume = has_volume;
	has_surface = has_surface || output->input("Surface")->link;
	has_volume = has_volume || output->input("Volume")->link;
	has_displacement = has_displacement || output->input("Displacement")->link;

	/* get requested attributes. this could be optimized by pruning unused
	 * nodes here already, but that's the job of the shader manager currently,
	 * and may not be so great for interactive rendering where you temporarily
	 * disconnect a node */

	AttributeRequestSet prev_attributes = attributes;

	attributes.clear();
	foreach(ShaderNode *node, graph->nodes)
		node->attributes(this, &attributes);
	
	/* compare if the attributes changed, mesh manager will check
	 * need_update_attributes, update the relevant meshes and clear it. */
	if(attributes.modified(prev_attributes)) {
		need_update_attributes = true;
		scene->mesh_manager->need_update = true;
	}

	if(has_volume != prev_has_volume) {
		scene->mesh_manager->need_flags_update = true;
		scene->object_manager->need_flags_update = true;
	}
}

void Shader::tag_used(Scene *scene)
{
	/* if an unused shader suddenly gets used somewhere, it needs to be
	 * recompiled because it was skipped for compilation before */
	if(!used) {
		need_update = true;
		scene->shader_manager->need_update = true;
	}
}

/* Shader Manager */

ShaderManager::ShaderManager()
{
	need_update = true;
	beckmann_table_offset = TABLE_OFFSET_INVALID;
}

ShaderManager::~ShaderManager()
{
}

ShaderManager *ShaderManager::create(Scene *scene, int shadingsystem)
{
	ShaderManager *manager;

	(void)shadingsystem;  /* Ignored when built without OSL. */

#ifdef WITH_OSL
	if(shadingsystem == SHADINGSYSTEM_OSL)
		manager = new OSLShaderManager();
	else
#endif
		manager = new SVMShaderManager();
	
	add_default(scene);

	return manager;
}

uint ShaderManager::get_attribute_id(ustring name)
{
	/* get a unique id for each name, for SVM attribute lookup */
	AttributeIDMap::iterator it = unique_attribute_id.find(name);

	if(it != unique_attribute_id.end())
		return it->second;
	
	uint id = (uint)ATTR_STD_NUM + unique_attribute_id.size();
	unique_attribute_id[name] = id;
	return id;
}

uint ShaderManager::get_attribute_id(AttributeStandard std)
{
	return (uint)std;
}

int ShaderManager::get_shader_id(Shader *shader, Mesh *mesh, bool smooth)
{
	/* get a shader id to pass to the kernel */
	int id = shader->id*2;
	
	/* index depends bump since this setting is not in the shader */
	if(mesh && mesh->displacement_method != Mesh::DISPLACE_TRUE)
		id += 1;
	/* smooth flag */
	if(smooth)
		id |= SHADER_SMOOTH_NORMAL;
	
	/* default flags */
	id |= SHADER_CAST_SHADOW|SHADER_AREA_LIGHT;
	
	return id;
}

void ShaderManager::device_update_shaders_used(Scene *scene)
{
	/* figure out which shaders are in use, so SVM/OSL can skip compiling them
	 * for speed and avoid loading image textures into memory */
	uint id = 0;
	foreach(Shader *shader, scene->shaders) {
		shader->used = false;
		shader->id = id++;
	}

	scene->default_surface->used = true;
	scene->default_light->used = true;
	scene->default_background->used = true;
	scene->default_empty->used = true;

	if(scene->background->shader)
		scene->background->shader->used = true;

	foreach(Mesh *mesh, scene->meshes)
		foreach(Shader *shader, mesh->used_shaders)
			shader->used = true;

	foreach(Light *light, scene->lights)
		if(light->shader)
			light->shader->used = true;
}

void ShaderManager::device_update_common(Device *device,
                                         DeviceScene *dscene,
                                         Scene *scene,
                                         Progress& /*progress*/)
{
	device->tex_free(dscene->shader_flag);
	dscene->shader_flag.clear();

	if(scene->shaders.size() == 0)
		return;

	uint shader_flag_size = scene->shaders.size()*4;
	uint *shader_flag = dscene->shader_flag.resize(shader_flag_size);
	uint i = 0;
	bool has_volumes = false;
	bool has_transparent_shadow = false;

	foreach(Shader *shader, scene->shaders) {
		uint flag = 0;

		if(shader->use_mis)
			flag |= SD_USE_MIS;
		if(shader->has_surface_transparent && shader->use_transparent_shadow)
			flag |= SD_HAS_TRANSPARENT_SHADOW;
		if(shader->has_volume) {
			flag |= SD_HAS_VOLUME;
			has_volumes = true;

			/* in this case we can assume transparent surface */
			if(!shader->has_surface)
				flag |= SD_HAS_ONLY_VOLUME;

			/* todo: this could check more fine grained, to skip useless volumes
			 * enclosed inside an opaque bsdf.
			 */
			flag |= SD_HAS_TRANSPARENT_SHADOW;
		}
		if(shader->heterogeneous_volume && shader->has_volume_spatial_varying)
			flag |= SD_HETEROGENEOUS_VOLUME;
		if(shader->has_bssrdf_bump)
			flag |= SD_HAS_BSSRDF_BUMP;
		if(shader->volume_sampling_method == VOLUME_SAMPLING_EQUIANGULAR)
			flag |= SD_VOLUME_EQUIANGULAR;
		if(shader->volume_sampling_method == VOLUME_SAMPLING_MULTIPLE_IMPORTANCE)
			flag |= SD_VOLUME_MIS;
		if(shader->volume_interpolation_method == VOLUME_INTERPOLATION_CUBIC)
			flag |= SD_VOLUME_CUBIC;
		if(shader->graph_bump)
			flag |= SD_HAS_BUMP;

		/* regular shader */
		shader_flag[i++] = flag;
		shader_flag[i++] = shader->pass_id;

		/* shader with bump mapping */
		if(shader->graph_bump)
			flag |= SD_HAS_BSSRDF_BUMP;

		shader_flag[i++] = flag;
		shader_flag[i++] = shader->pass_id;

		has_transparent_shadow |= (flag & SD_HAS_TRANSPARENT_SHADOW) != 0;
	}

	device->tex_alloc("__shader_flag", dscene->shader_flag);

	/* lookup tables */
	KernelTables *ktables = &dscene->data.tables;

	/* beckmann lookup table */
	if(beckmann_table_offset == TABLE_OFFSET_INVALID) {
		if(beckmann_table.size() == 0) {
			thread_scoped_lock lock(lookup_table_mutex);
			if(beckmann_table.size() == 0) {
				beckmann_table_build(beckmann_table);
			}
		}
		beckmann_table_offset = scene->lookup_tables->add_table(dscene, beckmann_table);
	}
	ktables->beckmann_offset = (int)beckmann_table_offset;

	/* integrator */
	KernelIntegrator *kintegrator = &dscene->data.integrator;
	kintegrator->use_volumes = has_volumes;
	/* TODO(sergey): De-duplicate with flags set in integrator.cpp. */
	if(scene->integrator->transparent_shadows) {
		kintegrator->transparent_shadows = has_transparent_shadow;
	}
}

void ShaderManager::device_free_common(Device *device, DeviceScene *dscene, Scene *scene)
{
	scene->lookup_tables->remove_table(&beckmann_table_offset);

	device->tex_free(dscene->shader_flag);
	dscene->shader_flag.clear();
}

void ShaderManager::add_default(Scene *scene)
{
	ShaderNode *closure, *out;

	/* default surface */
	{
		ShaderGraph *graph = new ShaderGraph();

		closure = graph->add(new DiffuseBsdfNode());
		closure->input("Color")->set(make_float3(0.8f, 0.8f, 0.8f));
		out = graph->output();

		graph->connect(closure->output("BSDF"), out->input("Surface"));

		Shader *shader = new Shader();
		shader->name = "default_surface";
		shader->graph = graph;
		scene->shaders.push_back(shader);
		scene->default_surface = shader;
	}

	/* default light */
	{
		ShaderGraph *graph = new ShaderGraph();

		closure = graph->add(new EmissionNode());
		closure->input("Color")->set(make_float3(0.8f, 0.8f, 0.8f));
		closure->input("Strength")->set(0.0f);
		out = graph->output();

		graph->connect(closure->output("Emission"), out->input("Surface"));

		Shader *shader = new Shader();
		shader->name = "default_light";
		shader->graph = graph;
		scene->shaders.push_back(shader);
		scene->default_light = shader;
	}

	/* default background */
	{
		ShaderGraph *graph = new ShaderGraph();

		Shader *shader = new Shader();
		shader->name = "default_background";
		shader->graph = graph;
		scene->shaders.push_back(shader);
		scene->default_background = shader;
	}

	/* default empty */
	{
		ShaderGraph *graph = new ShaderGraph();

		Shader *shader = new Shader();
		shader->name = "default_empty";
		shader->graph = graph;
		scene->shaders.push_back(shader);
		scene->default_empty = shader;
	}
}

void ShaderManager::get_requested_graph_features(ShaderGraph *graph,
                                                 DeviceRequestedFeatures *requested_features)
{
	foreach(ShaderNode *node, graph->nodes) {
		requested_features->max_nodes_group = max(requested_features->max_nodes_group,
		                                          node->get_group());
		requested_features->nodes_features |= node->get_feature();
		if(node->special_type == SHADER_SPECIAL_TYPE_CLOSURE) {
			BsdfNode *bsdf_node = static_cast<BsdfNode*>(node);
			if(CLOSURE_IS_VOLUME(bsdf_node->closure)) {
				requested_features->nodes_features |= NODE_FEATURE_VOLUME;
			}
		}
		if(node->has_surface_bssrdf()) {
			requested_features->use_subsurface = true;
		}
	}
}

void ShaderManager::get_requested_features(Scene *scene,
                                           DeviceRequestedFeatures *requested_features)
{
	requested_features->max_nodes_group = NODE_GROUP_LEVEL_0;
	requested_features->nodes_features = 0;
	for(int i = 0; i < scene->shaders.size(); i++) {
		Shader *shader = scene->shaders[i];
		/* Gather requested features from all the nodes from the graph nodes. */
		get_requested_graph_features(shader->graph, requested_features);
		/* Gather requested features from the graph itself. */
		if(shader->graph_bump) {
			get_requested_graph_features(shader->graph_bump,
			                             requested_features);
		}
		ShaderNode *output_node = shader->graph->output();
		if(output_node->input("Displacement")->link != NULL) {
			requested_features->nodes_features |= NODE_FEATURE_BUMP;
		}
		/* On top of volume nodes, also check if we need volume sampling because
		 * e.g. an Emission node would slip through the NODE_FEATURE_VOLUME check */
		if(shader->has_volume)
			requested_features->use_volume |= true;
	}
}

void ShaderManager::free_memory()
{
	beckmann_table.free_memory();
}

CCL_NAMESPACE_END