Welcome to mirror list, hosted at ThFree Co, Russian Federation.

sky_model.cpp « render « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f42c69dc7814cae1ebe4824383568935338296d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/*
This source is published under the following 3-clause BSD license.

Copyright (c) 2012 - 2013, Lukas Hosek and Alexander Wilkie
All rights reserved.

Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * None of the names of the contributors may be used to endorse or promote 
      products derived from this software without specific prior written 
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/* ============================================================================

This file is part of a sample implementation of the analytical skylight and
solar radiance models presented in the SIGGRAPH 2012 paper


           "An Analytic Model for Full Spectral Sky-Dome Radiance"

and the 2013 IEEE CG&A paper

       "Adding a Solar Radiance Function to the Hosek Skylight Model"

                                   both by 

                       Lukas Hosek and Alexander Wilkie
                Charles University in Prague, Czech Republic


                        Version: 1.4a, February 22nd, 2013
                        
Version history:

1.4a  February 22nd, 2013
      Removed unnecessary and counter-intuitive solar radius parameters 
      from the interface of the colourspace sky dome initialisation functions.

1.4   February 11th, 2013
      Fixed a bug which caused the relative brightness of the solar disc
      and the sky dome to be off by a factor of about 6. The sun was too 
      bright: this affected both normal and alien sun scenarios. The 
      coefficients of the solar radiance function were changed to fix this.

1.3   January 21st, 2013 (not released to the public)
      Added support for solar discs that are not exactly the same size as
      the terrestrial sun. Also added support for suns with a different
      emission spectrum ("Alien World" functionality).

1.2a  December 18th, 2012
      Fixed a mistake and some inaccuracies in the solar radiance function
      explanations found in ArHosekSkyModel.h. The actual source code is
      unchanged compared to version 1.2.

1.2   December 17th, 2012
      Native RGB data and a solar radiance function that matches the turbidity
      conditions were added.

1.1   September 2012
      The coefficients of the spectral model are now scaled so that the output
      is given in physical units: W / (m^-2 * sr * nm). Also, the output of the
      XYZ model is now no longer scaled to the range [0...1]. Instead, it is
      the result of a simple conversion from spectral data via the CIE 2 degree
      standard observer matching functions. Therefore, after multiplication
      with 683 lm / W, the Y channel now corresponds to luminance in lm.
     
1.0   May 11th, 2012
      Initial release.


Please visit http://cgg.mff.cuni.cz/projects/SkylightModelling/ to check if
an updated version of this code has been published!

============================================================================ */

/*

All instructions on how to use this code are in the accompanying header file.

*/

#include "sky_model.h"
#include "sky_model_data.h"

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

CCL_NAMESPACE_BEGIN

//   Some macro definitions that occur elsewhere in ART, and that have to be
//   replicated to make this a stand-alone module.

#ifndef NIL
#define NIL                         0
#endif

#ifndef MATH_PI 
#define MATH_PI                     3.141592653589793
#endif

#ifndef MATH_DEG_TO_RAD
#define MATH_DEG_TO_RAD             ( MATH_PI / 180.0 )
#endif

#ifndef MATH_RAD_TO_DEG
#define MATH_RAD_TO_DEG             ( 180.0 / MATH_PI )
#endif

#ifndef DEGREES
#define DEGREES                     * MATH_DEG_TO_RAD
#endif

#ifndef TERRESTRIAL_SOLAR_RADIUS
#define TERRESTRIAL_SOLAR_RADIUS    ( ( 0.51 DEGREES ) / 2.0 )
#endif

#ifndef ALLOC
#define ALLOC(_struct)              ((_struct *)malloc(sizeof(_struct)))
#endif

// internal definitions

typedef double *ArHosekSkyModel_Dataset;
typedef double *ArHosekSkyModel_Radiance_Dataset;

// internal functions

void ArHosekSkyModel_CookConfiguration(
        ArHosekSkyModel_Dataset       dataset, 
        ArHosekSkyModelConfiguration  config, 
        double                        turbidity, 
        double                        albedo, 
        double                        solar_elevation
        )
{
    double  * elev_matrix;

    int     int_turbidity = (int)turbidity;
    double  turbidity_rem = turbidity - (double)int_turbidity;

    solar_elevation = pow(solar_elevation / (MATH_PI / 2.0), (1.0 / 3.0));

    // alb 0 low turb

    elev_matrix = dataset + ( 9 * 6 * (int_turbidity-1) );
    
    
    for( unsigned int i = 0; i < 9; ++i )
    {
        //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
        config[i] = 
        (1.0-albedo) * (1.0 - turbidity_rem) 
        * ( pow(1.0-solar_elevation, 5.0) * elev_matrix[i]  + 
           5.0  * pow(1.0-solar_elevation, 4.0) * solar_elevation * elev_matrix[i+9] +
           10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[i+18] +
           10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[i+27] +
           5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[i+36] +
           pow(solar_elevation, 5.0)  * elev_matrix[i+45]);
    }

    // alb 1 low turb
    elev_matrix = dataset + (9*6*10 + 9*6*(int_turbidity-1));
    for(unsigned int i = 0; i < 9; ++i)
    {
        //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
        config[i] += 
        (albedo) * (1.0 - turbidity_rem)
        * ( pow(1.0-solar_elevation, 5.0) * elev_matrix[i]  + 
           5.0  * pow(1.0-solar_elevation, 4.0) * solar_elevation * elev_matrix[i+9] +
           10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[i+18] +
           10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[i+27] +
           5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[i+36] +
           pow(solar_elevation, 5.0)  * elev_matrix[i+45]);
    }

    if(int_turbidity == 10)
        return;

    // alb 0 high turb
    elev_matrix = dataset + (9*6*(int_turbidity));
    for(unsigned int i = 0; i < 9; ++i)
    {
        //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
        config[i] += 
        (1.0-albedo) * (turbidity_rem)
        * ( pow(1.0-solar_elevation, 5.0) * elev_matrix[i]  + 
           5.0  * pow(1.0-solar_elevation, 4.0) * solar_elevation * elev_matrix[i+9] +
           10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[i+18] +
           10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[i+27] +
           5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[i+36] +
           pow(solar_elevation, 5.0)  * elev_matrix[i+45]);
    }

    // alb 1 high turb
    elev_matrix = dataset + (9*6*10 + 9*6*(int_turbidity));
    for(unsigned int i = 0; i < 9; ++i)
    {
        //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
        config[i] += 
        (albedo) * (turbidity_rem)
        * ( pow(1.0-solar_elevation, 5.0) * elev_matrix[i]  + 
           5.0  * pow(1.0-solar_elevation, 4.0) * solar_elevation * elev_matrix[i+9] +
           10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[i+18] +
           10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[i+27] +
           5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[i+36] +
           pow(solar_elevation, 5.0)  * elev_matrix[i+45]);
    }
}

double ArHosekSkyModel_CookRadianceConfiguration(
        ArHosekSkyModel_Radiance_Dataset  dataset, 
        double                            turbidity, 
        double                            albedo, 
        double                            solar_elevation
        )
{
    double* elev_matrix;

    int int_turbidity = (int)turbidity;
    double turbidity_rem = turbidity - (double)int_turbidity;
    double res;
    solar_elevation = pow(solar_elevation / (MATH_PI / 2.0), (1.0 / 3.0));

    // alb 0 low turb
    elev_matrix = dataset + (6*(int_turbidity-1));
    //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
    res = (1.0-albedo) * (1.0 - turbidity_rem) *
        ( pow(1.0-solar_elevation, 5.0) * elev_matrix[0] +
         5.0*pow(1.0-solar_elevation, 4.0)*solar_elevation * elev_matrix[1] +
         10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[2] +
         10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[3] +
         5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[4] +
         pow(solar_elevation, 5.0) * elev_matrix[5]);

    // alb 1 low turb
    elev_matrix = dataset + (6*10 + 6*(int_turbidity-1));
    //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
    res += (albedo) * (1.0 - turbidity_rem) *
        ( pow(1.0-solar_elevation, 5.0) * elev_matrix[0] +
         5.0*pow(1.0-solar_elevation, 4.0)*solar_elevation * elev_matrix[1] +
         10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[2] +
         10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[3] +
         5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[4] +
         pow(solar_elevation, 5.0) * elev_matrix[5]);
    if(int_turbidity == 10)
        return res;

    // alb 0 high turb
    elev_matrix = dataset + (6*(int_turbidity));
    //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
    res += (1.0-albedo) * (turbidity_rem) *
        ( pow(1.0-solar_elevation, 5.0) * elev_matrix[0] +
         5.0*pow(1.0-solar_elevation, 4.0)*solar_elevation * elev_matrix[1] +
         10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[2] +
         10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[3] +
         5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[4] +
         pow(solar_elevation, 5.0) * elev_matrix[5]);

    // alb 1 high turb
    elev_matrix = dataset + (6*10 + 6*(int_turbidity));
    //(1-t).^3* A1 + 3*(1-t).^2.*t * A2 + 3*(1-t) .* t .^ 2 * A3 + t.^3 * A4;
    res += (albedo) * (turbidity_rem) *
        ( pow(1.0-solar_elevation, 5.0) * elev_matrix[0] +
         5.0*pow(1.0-solar_elevation, 4.0)*solar_elevation * elev_matrix[1] +
         10.0*pow(1.0-solar_elevation, 3.0)*pow(solar_elevation, 2.0) * elev_matrix[2] +
         10.0*pow(1.0-solar_elevation, 2.0)*pow(solar_elevation, 3.0) * elev_matrix[3] +
         5.0*(1.0-solar_elevation)*pow(solar_elevation, 4.0) * elev_matrix[4] +
         pow(solar_elevation, 5.0) * elev_matrix[5]);
    return res;
}

double ArHosekSkyModel_GetRadianceInternal(
        ArHosekSkyModelConfiguration  configuration, 
        double                        theta, 
        double                        gamma
        )
{
    const double expM = exp(configuration[4] * gamma);
    const double rayM = cos(gamma)*cos(gamma);
    const double mieM = (1.0 + cos(gamma)*cos(gamma)) / pow((1.0 + configuration[8]*configuration[8] - 2.0*configuration[8]*cos(gamma)), 1.5);
    const double zenith = sqrt(cos(theta));

    return (1.0 + configuration[0] * exp(configuration[1] / (cos(theta) + 0.01))) *
            (configuration[2] + configuration[3] * expM + configuration[5] * rayM + configuration[6] * mieM + configuration[7] * zenith);
}

#if 0
// spectral version

ArHosekSkyModelState  * arhosekskymodelstate_alloc_init(
        const double  solar_elevation,
        const double  atmospheric_turbidity,
        const double  ground_albedo
        )
{
    ArHosekSkyModelState  * state = ALLOC(ArHosekSkyModelState);

    state->solar_radius = ( 0.51 DEGREES ) / 2.0;
    state->turbidity    = atmospheric_turbidity;
    state->albedo       = ground_albedo;
    state->elevation    = solar_elevation;

    for( unsigned int wl = 0; wl < 11; ++wl )
    {
        ArHosekSkyModel_CookConfiguration(
            datasets[wl], 
            state->configs[wl], 
            atmospheric_turbidity, 
            ground_albedo, 
            solar_elevation
            );

        state->radiances[wl] = 
            ArHosekSkyModel_CookRadianceConfiguration(
                datasetsRad[wl],
                atmospheric_turbidity,
                ground_albedo,
                solar_elevation
                );

        state->emission_correction_factor_sun[wl] = 1.0;
        state->emission_correction_factor_sky[wl] = 1.0;
    }

    return state;
}

//   'blackbody_scaling_factor'
//
//   Fudge factor, computed in Mathematica, to scale the results of the
//   following function to match the solar radiance spectrum used in the
//   original simulation. The scaling is done so their integrals over the
//   range from 380.0 to 720.0 nanometers match for a blackbody temperature
//   of 5800 K.
//   Which leaves the original spectrum being less bright overall than the 5.8k
//   blackbody radiation curve if the ultra-violet part of the spectrum is
//   also considered. But the visible brightness should be very similar.

const double blackbody_scaling_factor = 3.19992 * 10E-11;

//   'art_blackbody_dd_value()' function
//
//   Blackbody radiance, Planck's formula

double art_blackbody_dd_value(
        const double  temperature,
        const double  lambda
        )
{
    double  c1 = 3.74177 * 10E-17;
    double  c2 = 0.0143878;
    double  value;
    
    value =   ( c1 / ( pow( lambda, 5.0 ) ) )
            * ( 1.0 / ( exp( c2 / ( lambda * temperature ) ) - 1.0 ) );

    return value;
}

//   'originalSolarRadianceTable[]'
//
//   The solar spectrum incident at the top of the atmosphere, as it was used 
//   in the brute force path tracer that generated the reference results the 
//   model was fitted to. We need this as the yardstick to compare any altered 
//   Blackbody emission spectra for alien world stars to.

//   This is just the data from the Preetham paper, extended into the UV range.

const double originalSolarRadianceTable[] =
{
     7500.0,
    12500.0,
    21127.5,
    26760.5,
    30663.7,
    27825.0,
    25503.8,
    25134.2,
    23212.1,
    21526.7,
    19870.8
};

ArHosekSkyModelState  * arhosekskymodelstate_alienworld_alloc_init(
        const double  solar_elevation,
        const double  solar_intensity,
        const double  solar_surface_temperature_kelvin,
        const double  atmospheric_turbidity,
        const double  ground_albedo
        )
{
    ArHosekSkyModelState  * state = ALLOC(ArHosekSkyModelState);

    state->turbidity    = atmospheric_turbidity;
    state->albedo       = ground_albedo;
    state->elevation    = solar_elevation;
    
    for( unsigned int wl = 0; wl < 11; ++wl )
    {
        //   Basic init as for the normal scenario
        
        ArHosekSkyModel_CookConfiguration(
            datasets[wl], 
            state->configs[wl], 
            atmospheric_turbidity, 
            ground_albedo, 
            solar_elevation
            );

        state->radiances[wl] = 
            ArHosekSkyModel_CookRadianceConfiguration(
                datasetsRad[wl],
                atmospheric_turbidity, 
                ground_albedo,
                solar_elevation
                );
        
        //   The wavelength of this band in nanometers
        
        double  owl = ( 320.0 + 40.0 * wl ) * 10E-10;
        
        //   The original intensity we just computed
        
        double  osr = originalSolarRadianceTable[wl];
        
        //   The intensity of a blackbody with the desired temperature
        //   The fudge factor described above is used to make sure the BB
        //   function matches the used radiance data reasonably well
        //   in magnitude.
        
        double  nsr =
              art_blackbody_dd_value(solar_surface_temperature_kelvin, owl)
            * blackbody_scaling_factor;

        //   Correction factor for this waveband is simply the ratio of
        //   the two.

        state->emission_correction_factor_sun[wl] = nsr / osr;
    }

    //   We then compute the average correction factor of all wavebands.

    //   Theoretically, some weighting to favour wavelengths human vision is
    //   more sensitive to could be introduced here - think V(lambda). But 
    //   given that the whole effort is not *that* accurate to begin with (we
    //   are talking about the appearance of alien worlds, after all), simple
    //   averaging over the visible wavelenghts (! - this is why we start at
    //   WL #2, and only use 2-11) seems like a sane first approximation.
    
    double  correctionFactor = 0.0;
    
    for ( unsigned int i = 2; i < 11; i++ )
    {
        correctionFactor +=
            state->emission_correction_factor_sun[i];
    }
    
    //   This is the average ratio in emitted energy between our sun, and an 
    //   equally large sun with the blackbody spectrum we requested.
    
    //   Division by 9 because we only used 9 of the 11 wavelengths for this
    //   (see above).
    
    double  ratio = correctionFactor / 9.0;

    //   This ratio is then used to determine the radius of the alien sun
    //   on the sky dome. The additional factor 'solar_intensity' can be used
    //   to make the alien sun brighter or dimmer compared to our sun.
    
    state->solar_radius =
          ( sqrt( solar_intensity ) * TERRESTRIAL_SOLAR_RADIUS )
        / sqrt( ratio );

    //   Finally, we have to reduce the scaling factor of the sky by the
    //   ratio used to scale the solar disc size. The rationale behind this is 
    //   that the scaling factors apply to the new blackbody spectrum, which 
    //   can be more or less bright than the one our sun emits. However, we 
    //   just scaled the size of the alien solar disc so it is roughly as 
    //   bright (in terms of energy emitted) as the terrestrial sun. So the sky 
    //   dome has to be reduced in brightness appropriately - but not in an 
    //   uniform fashion across wavebands. If we did that, the sky colour would
    //   be wrong.
    
    for ( unsigned int i = 0; i < 11; i++ )
    {
        state->emission_correction_factor_sky[i] =
              solar_intensity
            * state->emission_correction_factor_sun[i] / ratio;
    }
    
    return state;
}
#endif

void arhosekskymodelstate_free(
        ArHosekSkyModelState  * state
        )
{
    free(state);
}

double arhosekskymodel_radiance(
        ArHosekSkyModelState  * state,
        double                  theta, 
        double                  gamma, 
        double                  wavelength
        )
{
    int low_wl = (wavelength - 320.0 ) / 40.0;

    if ( low_wl < 0 || low_wl >= 11 )
        return 0.0f;

    double interp = fmod((wavelength - 320.0 ) / 40.0, 1.0);

    double val_low = 
          ArHosekSkyModel_GetRadianceInternal(
                state->configs[low_wl],
                theta,
                gamma
              )
        * state->radiances[low_wl]
        * state->emission_correction_factor_sky[low_wl];

    if ( interp < 1e-6 )
        return val_low;

    double result = ( 1.0 - interp ) * val_low;

    if ( low_wl+1 < 11 )
    {
        result +=
              interp
            * ArHosekSkyModel_GetRadianceInternal(
                    state->configs[low_wl+1],
                    theta,
                    gamma
                  )
            * state->radiances[low_wl+1]
            * state->emission_correction_factor_sky[low_wl+1];
    }

    return result;
}


// xyz and rgb versions

ArHosekSkyModelState  * arhosek_xyz_skymodelstate_alloc_init(
        const double  turbidity, 
        const double  albedo, 
        const double  elevation
        )
{
    ArHosekSkyModelState  * state = ALLOC(ArHosekSkyModelState);

    state->solar_radius = TERRESTRIAL_SOLAR_RADIUS;
    state->turbidity    = turbidity;
    state->albedo       = albedo;
    state->elevation    = elevation;
    
    for( unsigned int channel = 0; channel < 3; ++channel )
    {
        ArHosekSkyModel_CookConfiguration(
            datasetsXYZ[channel], 
            state->configs[channel], 
            turbidity, 
            albedo, 
            elevation
            );
        
        state->radiances[channel] = 
        ArHosekSkyModel_CookRadianceConfiguration(
            datasetsXYZRad[channel],
            turbidity, 
            albedo,
            elevation
            );
    }
    
    return state;
}

#if 0


ArHosekSkyModelState  * arhosek_rgb_skymodelstate_alloc_init(
        const double  turbidity, 
        const double  albedo, 
        const double  elevation
        )
{
    ArHosekSkyModelState* state = ALLOC(ArHosekSkyModelState);
    
    state->solar_radius = TERRESTRIAL_SOLAR_RADIUS;
    state->turbidity    = turbidity;
    state->albedo       = albedo;
    state->elevation    = elevation;

    for( unsigned int channel = 0; channel < 3; ++channel )
    {
        ArHosekSkyModel_CookConfiguration(
            datasetsRGB[channel], 
            state->configs[channel], 
            turbidity, 
            albedo, 
            elevation
            );
        
        state->radiances[channel] = 
        ArHosekSkyModel_CookRadianceConfiguration(
            datasetsRGBRad[channel],
            turbidity, 
            albedo,
            elevation
            );
    }
    
    return state;
}

double arhosek_tristim_skymodel_radiance(
    ArHosekSkyModelState  * state,
    double                  theta, 
    double                  gamma, 
    int                     channel
    )
{
    return
        ArHosekSkyModel_GetRadianceInternal(
            state->configs[channel], 
            theta, 
            gamma 
            ) 
        * state->radiances[channel];
}

const int pieces = 45;
const int order = 4;

double arhosekskymodel_sr_internal(
        ArHosekSkyModelState  * state,
        int                     turbidity,
        int                     wl,
        double                  elevation
        )
{
    int pos =
        (int) (pow(2.0*elevation / MATH_PI, 1.0/3.0) * pieces); // floor
    
    if ( pos > 44 ) pos = 44;
    
    const double break_x =
        pow(((double) pos / (double) pieces), 3.0) * (MATH_PI * 0.5);

    const double  * coefs =
        solarDatasets[wl] + (order * pieces * turbidity + order * (pos+1) - 1);

    double res = 0.0;
    const double x = elevation - break_x;
    double x_exp = 1.0;

    for (int i = 0; i < order; ++i)
    {
        res += x_exp * *coefs--;
        x_exp *= x;
    }

    return res * state->emission_correction_factor_sun[wl];
}

double arhosekskymodel_solar_radiance_internal2(
        ArHosekSkyModelState  * state,
        double                  wavelength,
        double                  elevation,
        double                  gamma
        )
{
    assert(
           wavelength >= 320.0
        && wavelength <= 720.0
        && state->turbidity >= 1.0
        && state->turbidity <= 10.0
        );
            
    
    int     turb_low  = (int) state->turbidity - 1;
    double  turb_frac = state->turbidity - (double) (turb_low + 1);
    
    if ( turb_low == 9 )
    {
        turb_low  = 8;
        turb_frac = 1.0;
    }

    int    wl_low  = (int) ((wavelength - 320.0) / 40.0);
    double wl_frac = fmod(wavelength, 40.0) / 40.0;
    
    if ( wl_low == 10 )
    {
        wl_low = 9;
        wl_frac = 1.0;
    }

    double direct_radiance =
          ( 1.0 - turb_frac )
        * (    (1.0 - wl_frac)
             * arhosekskymodel_sr_internal(
                     state,
                     turb_low,
                     wl_low,
                     elevation
                   )
           +   wl_frac
             * arhosekskymodel_sr_internal(
                     state,
                     turb_low,
                     wl_low+1,
                     elevation
                   )
          )
      +   turb_frac
        * (    ( 1.0 - wl_frac )
             * arhosekskymodel_sr_internal(
                     state,
                     turb_low+1,
                     wl_low,
                     elevation
                   )
           +   wl_frac
             * arhosekskymodel_sr_internal(
                     state,
                     turb_low+1,
                     wl_low+1,
                     elevation
                   )
          );

    double ldCoefficient[6];
    
    for ( int i = 0; i < 6; i++ )
        ldCoefficient[i] =
              (1.0 - wl_frac) * limbDarkeningDatasets[wl_low  ][i]
            +        wl_frac  * limbDarkeningDatasets[wl_low+1][i];
    
    // sun distance to diameter ratio, squared

    const double sol_rad_sin = sin(state->solar_radius);
    const double ar2 = 1 / ( sol_rad_sin * sol_rad_sin );
    const double singamma = sin(gamma);
    double sc2 = 1.0 - ar2 * singamma * singamma;
    if (sc2 < 0.0 ) sc2 = 0.0;
    double sampleCosine = sqrt (sc2);
    
    //   The following will be improved in future versions of the model:
    //   here, we directly use fitted 5th order polynomials provided by the
    //   astronomical community for the limb darkening effect. Astronomers need
    //   such accurate fittings for their predictions. However, this sort of
    //   accuracy is not really needed for CG purposes, so an approximated
    //   dataset based on quadratic polynomials will be provided in a future
    //   release.

    double  darkeningFactor =
          ldCoefficient[0]
        + ldCoefficient[1] * sampleCosine
        + ldCoefficient[2] * pow( sampleCosine, 2.0 )
        + ldCoefficient[3] * pow( sampleCosine, 3.0 )
        + ldCoefficient[4] * pow( sampleCosine, 4.0 )
        + ldCoefficient[5] * pow( sampleCosine, 5.0 );

    direct_radiance *= darkeningFactor;

    return direct_radiance;
}

double arhosekskymodel_solar_radiance(
        ArHosekSkyModelState  * state,
        double                  theta, 
        double                  gamma, 
        double                  wavelength
        )
{
    double  direct_radiance =
        arhosekskymodel_solar_radiance_internal2(
            state,
            wavelength,
            ((MATH_PI/2.0)-theta),
            gamma
            );

    double  inscattered_radiance =
        arhosekskymodel_radiance(
            state,
            theta,
            gamma,
            wavelength
            );
    
    return  direct_radiance + inscattered_radiance;
}
#endif

CCL_NAMESPACE_END