Welcome to mirror list, hosted at ThFree Co, Russian Federation.

tile.cpp « render « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a9620f79fa0600127624202767faf47eec82d2b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "render/tile.h"

#include "util/util_algorithm.h"
#include "util/util_types.h"

CCL_NAMESPACE_BEGIN

namespace {

class TileComparator {
public:
	TileComparator(TileOrder order_, int2 center_, Tile *tiles_)
	 :  order(order_),
	    center(center_),
	    tiles(tiles_)
	{}

	bool operator()(int a, int b)
	{
		switch(order) {
			case TILE_CENTER:
			{
				float2 dist_a = make_float2(center.x - (tiles[a].x + tiles[a].w/2),
				                            center.y - (tiles[a].y + tiles[a].h/2));
				float2 dist_b = make_float2(center.x - (tiles[b].x + tiles[b].w/2),
				                            center.y - (tiles[b].y + tiles[b].h/2));
				return dot(dist_a, dist_a) < dot(dist_b, dist_b);
			}
			case TILE_LEFT_TO_RIGHT:
				return (tiles[a].x == tiles[b].x)? (tiles[a].y < tiles[b].y): (tiles[a].x < tiles[b].x);
			case TILE_RIGHT_TO_LEFT:
				return (tiles[a].x == tiles[b].x)? (tiles[a].y < tiles[b].y): (tiles[a].x > tiles[b].x);
			case TILE_TOP_TO_BOTTOM:
				return (tiles[a].y == tiles[b].y)? (tiles[a].x < tiles[b].x): (tiles[a].y > tiles[b].y);
			case TILE_BOTTOM_TO_TOP:
			default:
				return (tiles[a].y == tiles[b].y)? (tiles[a].x < tiles[b].x): (tiles[a].y < tiles[b].y);
		}
	}

protected:
	TileOrder order;
	int2 center;
	Tile *tiles;
};

inline int2 hilbert_index_to_pos(int n, int d)
{
	int2 r, xy = make_int2(0, 0);
	for(int s = 1; s < n; s *= 2) {
		r.x = (d >> 1) & 1;
		r.y = (d ^ r.x) & 1;
		if(!r.y) {
			if(r.x) {
				xy = make_int2(s-1, s-1) - xy;
			}
			swap(xy.x, xy.y);
		}
		xy += r*make_int2(s, s);
		d >>= 2;
	}
	return xy;
}

enum SpiralDirection {
	DIRECTION_UP,
	DIRECTION_LEFT,
	DIRECTION_DOWN,
	DIRECTION_RIGHT,
};

}  /* namespace */

TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_,
                         bool preserve_tile_device_, bool background_, TileOrder tile_order_,
                         int num_devices_, int pixel_size_)
{
	progressive = progressive_;
	tile_size = tile_size_;
	tile_order = tile_order_;
	start_resolution = start_resolution_;
	pixel_size = pixel_size_;
	num_samples = num_samples_;
	num_devices = num_devices_;
	preserve_tile_device = preserve_tile_device_;
	background = background_;
	schedule_denoising = false;

	range_start_sample = 0;
	range_num_samples = -1;

	BufferParams buffer_params;
	reset(buffer_params, 0);
}

TileManager::~TileManager()
{
}

void TileManager::free_device()
{
	if(schedule_denoising) {
		for(int i = 0; i < state.tiles.size(); i++) {
			delete state.tiles[i].buffers;
			state.tiles[i].buffers = NULL;
		}
	}
}

static int get_divider(int w, int h, int start_resolution)
{
	int divider = 1;
	if(start_resolution != INT_MAX) {
		while(w*h > start_resolution*start_resolution) {
			w = max(1, w/2);
			h = max(1, h/2);

			divider <<= 1;
		}
	}
	return divider;
}

void TileManager::reset(BufferParams& params_, int num_samples_)
{
	params = params_;

	set_samples(num_samples_);

	state.buffer = BufferParams();
	state.sample = range_start_sample - 1;
	state.num_tiles = 0;
	state.num_samples = 0;
	state.resolution_divider = get_divider(params.width, params.height, start_resolution);
	state.render_tiles.clear();
	state.denoising_tiles.clear();
	state.tiles.clear();
}

void TileManager::set_samples(int num_samples_)
{
	num_samples = num_samples_;

	/* No real progress indication is possible when using unlimited samples. */
	if(num_samples == INT_MAX) {
		state.total_pixel_samples = 0;
	}
	else {
		uint64_t pixel_samples = 0;
		/* While rendering in the viewport, the initial preview resolution is increased to the native resolution
		 * before the actual rendering begins. Therefore, additional pixel samples will be rendered. */
		int divider = max(get_divider(params.width, params.height, start_resolution) / 2, pixel_size);
		while(divider > pixel_size) {
			int image_w = max(1, params.width/divider);
			int image_h = max(1, params.height/divider);
			pixel_samples += image_w * image_h;
			divider >>= 1;
		}

		int image_w = max(1, params.width/divider);
		int image_h = max(1, params.height/divider);
		state.total_pixel_samples = pixel_samples + (uint64_t)get_num_effective_samples() * image_w*image_h;
		if(schedule_denoising) {
			state.total_pixel_samples += params.width*params.height;
		}
	}
}

/* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render device.
 * If sliced is true, slice image into as much pieces as how many devices are rendering this image. */
int TileManager::gen_tiles(bool sliced)
{
	int resolution = state.resolution_divider;
	int image_w = max(1, params.width/resolution);
	int image_h = max(1, params.height/resolution);
	int2 center = make_int2(image_w/2, image_h/2);

	int num_logical_devices = preserve_tile_device? num_devices: 1;
	int num = min(image_h, num_logical_devices);
	int slice_num = sliced? num: 1;
	int tile_w = (tile_size.x >= image_w) ? 1 : divide_up(image_w, tile_size.x);

	state.tiles.clear();
	state.render_tiles.clear();
	state.denoising_tiles.clear();
	state.render_tiles.resize(num);
	state.denoising_tiles.resize(num);
	state.tile_stride = tile_w;
	vector<list<int> >::iterator tile_list;
	tile_list = state.render_tiles.begin();

	if(tile_order == TILE_HILBERT_SPIRAL) {
		assert(!sliced);

		int tile_h = (tile_size.y >= image_h) ? 1 : divide_up(image_h, tile_size.y);
		state.tiles.resize(tile_w*tile_h);

		/* Size of blocks in tiles, must be a power of 2 */
		const int hilbert_size = (max(tile_size.x, tile_size.y) <= 12)? 8: 4;

		int tiles_per_device = divide_up(tile_w * tile_h, num);
		int cur_device = 0, cur_tiles = 0;

		int2 block_size = tile_size * make_int2(hilbert_size, hilbert_size);
		/* Number of blocks to fill the image */
		int blocks_x = (block_size.x >= image_w)? 1: divide_up(image_w, block_size.x);
		int blocks_y = (block_size.y >= image_h)? 1: divide_up(image_h, block_size.y);
		int n = max(blocks_x, blocks_y) | 0x1; /* Side length of the spiral (must be odd) */
		/* Offset of spiral (to keep it centered) */
		int2 offset = make_int2((image_w - n*block_size.x)/2, (image_h - n*block_size.y)/2);
		offset = (offset / tile_size) * tile_size; /* Round to tile border. */

		int2 block = make_int2(0, 0); /* Current block */
		SpiralDirection prev_dir = DIRECTION_UP, dir = DIRECTION_UP;
		for(int i = 0;;) {
			/* Generate the tiles in the current block. */
			for(int hilbert_index = 0; hilbert_index < hilbert_size*hilbert_size; hilbert_index++) {
				int2 tile, hilbert_pos = hilbert_index_to_pos(hilbert_size, hilbert_index);
				/* Rotate block according to spiral direction. */
				if(prev_dir == DIRECTION_UP && dir == DIRECTION_UP) {
					tile = make_int2(hilbert_pos.y, hilbert_pos.x);
				}
				else if(dir == DIRECTION_LEFT || prev_dir == DIRECTION_LEFT) {
					tile = hilbert_pos;
				}
				else if(dir == DIRECTION_DOWN) {
					tile = make_int2(hilbert_size-1-hilbert_pos.y, hilbert_size-1-hilbert_pos.x);
				}
				else {
					tile = make_int2(hilbert_size-1-hilbert_pos.x, hilbert_size-1-hilbert_pos.y);
				}

				int2 pos = block*block_size + tile*tile_size + offset;
				/* Only add tiles which are in the image (tiles outside of the image can be generated since the spiral is always square). */
				if(pos.x >= 0 && pos.y >= 0 && pos.x < image_w && pos.y < image_h) {
					int w = min(tile_size.x, image_w - pos.x);
					int h = min(tile_size.y, image_h - pos.y);
					int2 ipos = pos / tile_size;
					int idx = ipos.y*tile_w + ipos.x;
					state.tiles[idx] = Tile(idx, pos.x, pos.y, w, h, cur_device, Tile::RENDER);
					tile_list->push_front(idx);
					cur_tiles++;

					if(cur_tiles == tiles_per_device) {
						tile_list++;
						cur_tiles = 0;
						cur_device++;
					}
				}
			}

			/* Stop as soon as the spiral has reached the center block. */
			if(block.x == (n-1)/2 && block.y == (n-1)/2)
				break;

			/* Advance to next block. */
			prev_dir = dir;
			switch(dir) {
				case DIRECTION_UP:
					block.y++;
					if(block.y == (n-i-1)) {
						dir = DIRECTION_LEFT;
					}
					break;
				case DIRECTION_LEFT:
					block.x++;
					if(block.x == (n-i-1)) {
						dir = DIRECTION_DOWN;
					}
					break;
				case DIRECTION_DOWN:
					block.y--;
					if(block.y == i) {
						dir = DIRECTION_RIGHT;
					}
					break;
				case DIRECTION_RIGHT:
					block.x--;
					if(block.x == i+1) {
						dir = DIRECTION_UP;
						i++;
					}
					break;
			}
		}
		return tile_w*tile_h;
	}

	int idx = 0;
	for(int slice = 0; slice < slice_num; slice++) {
		int slice_y = (image_h/slice_num)*slice;
		int slice_h = (slice == slice_num-1)? image_h - slice*(image_h/slice_num): image_h/slice_num;

		int tile_h = (tile_size.y >= slice_h)? 1: divide_up(slice_h, tile_size.y);

		int tiles_per_device = divide_up(tile_w * tile_h, num);
		int cur_device = 0, cur_tiles = 0;

		for(int tile_y = 0; tile_y < tile_h; tile_y++) {
			for(int tile_x = 0; tile_x < tile_w; tile_x++, idx++) {
				int x = tile_x * tile_size.x;
				int y = tile_y * tile_size.y;
				int w = (tile_x == tile_w-1)? image_w - x: tile_size.x;
				int h = (tile_y == tile_h-1)? slice_h - y: tile_size.y;

				state.tiles.push_back(Tile(idx, x, y + slice_y, w, h, sliced? slice: cur_device, Tile::RENDER));
				tile_list->push_back(idx);

				if(!sliced) {
					cur_tiles++;

					if(cur_tiles == tiles_per_device) {
						/* Tiles are already generated in Bottom-to-Top order, so no sort is necessary in that case. */
						if(tile_order != TILE_BOTTOM_TO_TOP) {
							tile_list->sort(TileComparator(tile_order, center, &state.tiles[0]));
						}
						tile_list++;
						cur_tiles = 0;
						cur_device++;
					}
				}
			}
		}
		if(sliced) {
			tile_list++;
		}
	}

	return idx;
}

void TileManager::set_tiles()
{
	int resolution = state.resolution_divider;
	int image_w = max(1, params.width/resolution);
	int image_h = max(1, params.height/resolution);

	state.num_tiles = gen_tiles(!background);

	state.buffer.width = image_w;
	state.buffer.height = image_h;

	state.buffer.full_x = params.full_x/resolution;
	state.buffer.full_y = params.full_y/resolution;
	state.buffer.full_width = max(1, params.full_width/resolution);
	state.buffer.full_height = max(1, params.full_height/resolution);
}

int TileManager::get_neighbor_index(int index, int neighbor)
{
	static const int dx[] = {-1, 0, 1, -1, 1, -1, 0, 1, 0}, dy[] = {-1, -1, -1, 0, 0, 1, 1, 1, 0};

	int resolution = state.resolution_divider;
	int image_w = max(1, params.width/resolution);
	int image_h = max(1, params.height/resolution);
	int tile_w = (tile_size.x >= image_w)? 1: divide_up(image_w, tile_size.x);
	int tile_h = (tile_size.y >= image_h)? 1: divide_up(image_h, tile_size.y);

	int nx = state.tiles[index].x/tile_size.x + dx[neighbor], ny = state.tiles[index].y/tile_size.y + dy[neighbor];
	if(nx < 0 || ny < 0 || nx >= tile_w || ny >= tile_h)
		return -1;

	return ny*state.tile_stride + nx;
}

/* Checks whether all neighbors of a tile (as well as the tile itself) are at least at state min_state. */
bool TileManager::check_neighbor_state(int index, Tile::State min_state)
{
	if(index < 0 || state.tiles[index].state < min_state) {
		return false;
	}
	for(int neighbor = 0; neighbor < 9; neighbor++) {
		int nindex = get_neighbor_index(index, neighbor);
		/* Out-of-bounds tiles don't matter. */
		if(nindex >= 0 && state.tiles[nindex].state < min_state) {
			return false;
		}
	}

	return true;
}

/* Returns whether the tile should be written (and freed if no denoising is used) instead of updating. */
bool TileManager::finish_tile(int index, bool &delete_tile)
{
	delete_tile = false;

	switch(state.tiles[index].state) {
		case Tile::RENDER:
		{
			if(!schedule_denoising) {
				state.tiles[index].state = Tile::DONE;
				delete_tile = true;
				return true;
			}
			state.tiles[index].state = Tile::RENDERED;
			/* For each neighbor and the tile itself, check whether all of its neighbors have been rendered. If yes, it can be denoised. */
			for(int neighbor = 0; neighbor < 9; neighbor++) {
				int nindex = get_neighbor_index(index, neighbor);
				if(check_neighbor_state(nindex, Tile::RENDERED)) {
					state.tiles[nindex].state = Tile::DENOISE;
					state.denoising_tiles[state.tiles[nindex].device].push_back(nindex);
				}
			}
			return false;
		}
		case Tile::DENOISE:
		{
			state.tiles[index].state = Tile::DENOISED;
			/* For each neighbor and the tile itself, check whether all of its neighbors have been denoised. If yes, it can be freed. */
			for(int neighbor = 0; neighbor < 9; neighbor++) {
				int nindex = get_neighbor_index(index, neighbor);
				if(check_neighbor_state(nindex, Tile::DENOISED)) {
					state.tiles[nindex].state = Tile::DONE;
					/* It can happen that the tile just finished denoising and already can be freed here.
					 * However, in that case it still has to be written before deleting, so we can't delete it yet. */
					if(neighbor == 8) {
						delete_tile = true;
					}
					else {
						delete state.tiles[nindex].buffers;
						state.tiles[nindex].buffers = NULL;
					}
				}
			}
			return true;
		}
		default:
			assert(false);
			return true;
	}
}

bool TileManager::next_tile(Tile* &tile, int device)
{
	int logical_device = preserve_tile_device? device: 0;

	if(logical_device >= state.render_tiles.size())
		return false;

	if(!state.denoising_tiles[logical_device].empty()) {
		int idx = state.denoising_tiles[logical_device].front();
		state.denoising_tiles[logical_device].pop_front();
		tile = &state.tiles[idx];
		return true;
	}

	if(state.render_tiles[logical_device].empty())
		return false;

	int idx = state.render_tiles[logical_device].front();
	state.render_tiles[logical_device].pop_front();
	tile = &state.tiles[idx];
	return true;
}

bool TileManager::done()
{
	int end_sample = (range_num_samples == -1)
	                     ? num_samples
	                     : range_start_sample + range_num_samples;
	return (state.resolution_divider == pixel_size) &&
	       (state.sample+state.num_samples >= end_sample);
}

bool TileManager::next()
{
	if(done())
		return false;

	if(progressive && state.resolution_divider > pixel_size) {
		state.sample = 0;
		state.resolution_divider = max(state.resolution_divider/2, pixel_size);
		state.num_samples = 1;
		set_tiles();
	}
	else {
		state.sample++;

		if(progressive)
			state.num_samples = 1;
		else if(range_num_samples == -1)
			state.num_samples = num_samples;
		else
			state.num_samples = range_num_samples;

		state.resolution_divider = pixel_size;
		set_tiles();
	}

	return true;
}

int TileManager::get_num_effective_samples()
{
	return (range_num_samples == -1) ? num_samples
	                                 : range_num_samples;
}

CCL_NAMESPACE_END