Welcome to mirror list, hosted at ThFree Co, Russian Federation.

camera.cpp « scene « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: eec269ab5428a5ff51bb745b5460970bfafa672b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#include "scene/camera.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/scene.h"
#include "scene/stats.h"
#include "scene/tables.h"

#include "device/device.h"

#include "util/foreach.h"
#include "util/function.h"
#include "util/log.h"
#include "util/math_cdf.h"
#include "util/task.h"
#include "util/time.h"
#include "util/vector.h"

/* needed for calculating differentials */
#include "kernel/device/cpu/compat.h"
#include "kernel/device/cpu/globals.h"

#include "kernel/camera/camera.h"

CCL_NAMESPACE_BEGIN

static float shutter_curve_eval(float x, array<float> &shutter_curve)
{
  if (shutter_curve.size() == 0) {
    return 1.0f;
  }

  x *= shutter_curve.size();
  int index = (int)x;
  float frac = x - index;
  if (index < shutter_curve.size() - 1) {
    return lerp(shutter_curve[index], shutter_curve[index + 1], frac);
  }
  else {
    return shutter_curve[shutter_curve.size() - 1];
  }
}

NODE_DEFINE(Camera)
{
  NodeType *type = NodeType::add("camera", create);

  SOCKET_FLOAT(shuttertime, "Shutter Time", 1.0f);

  static NodeEnum motion_position_enum;
  motion_position_enum.insert("start", MOTION_POSITION_START);
  motion_position_enum.insert("center", MOTION_POSITION_CENTER);
  motion_position_enum.insert("end", MOTION_POSITION_END);
  SOCKET_ENUM(motion_position, "Motion Position", motion_position_enum, MOTION_POSITION_CENTER);

  static NodeEnum rolling_shutter_type_enum;
  rolling_shutter_type_enum.insert("none", ROLLING_SHUTTER_NONE);
  rolling_shutter_type_enum.insert("top", ROLLING_SHUTTER_TOP);
  SOCKET_ENUM(rolling_shutter_type,
              "Rolling Shutter Type",
              rolling_shutter_type_enum,
              ROLLING_SHUTTER_NONE);
  SOCKET_FLOAT(rolling_shutter_duration, "Rolling Shutter Duration", 0.1f);

  SOCKET_FLOAT_ARRAY(shutter_curve, "Shutter Curve", array<float>());

  SOCKET_FLOAT(aperturesize, "Aperture Size", 0.0f);
  SOCKET_FLOAT(focaldistance, "Focal Distance", 10.0f);
  SOCKET_UINT(blades, "Blades", 0);
  SOCKET_FLOAT(bladesrotation, "Blades Rotation", 0.0f);

  SOCKET_TRANSFORM(matrix, "Matrix", transform_identity());
  SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());

  SOCKET_FLOAT(aperture_ratio, "Aperture Ratio", 1.0f);

  static NodeEnum type_enum;
  type_enum.insert("perspective", CAMERA_PERSPECTIVE);
  type_enum.insert("orthograph", CAMERA_ORTHOGRAPHIC);
  type_enum.insert("panorama", CAMERA_PANORAMA);
  SOCKET_ENUM(camera_type, "Type", type_enum, CAMERA_PERSPECTIVE);

  static NodeEnum panorama_type_enum;
  panorama_type_enum.insert("equirectangular", PANORAMA_EQUIRECTANGULAR);
  panorama_type_enum.insert("mirrorball", PANORAMA_MIRRORBALL);
  panorama_type_enum.insert("fisheye_equidistant", PANORAMA_FISHEYE_EQUIDISTANT);
  panorama_type_enum.insert("fisheye_equisolid", PANORAMA_FISHEYE_EQUISOLID);
  panorama_type_enum.insert("fisheye_lens_polynomial", PANORAMA_FISHEYE_LENS_POLYNOMIAL);
  SOCKET_ENUM(panorama_type, "Panorama Type", panorama_type_enum, PANORAMA_EQUIRECTANGULAR);

  SOCKET_FLOAT(fisheye_fov, "Fisheye FOV", M_PI_F);
  SOCKET_FLOAT(fisheye_lens, "Fisheye Lens", 10.5f);
  SOCKET_FLOAT(latitude_min, "Latitude Min", -M_PI_2_F);
  SOCKET_FLOAT(latitude_max, "Latitude Max", M_PI_2_F);
  SOCKET_FLOAT(longitude_min, "Longitude Min", -M_PI_F);
  SOCKET_FLOAT(longitude_max, "Longitude Max", M_PI_F);
  SOCKET_FLOAT(fov, "FOV", M_PI_4_F);
  SOCKET_FLOAT(fov_pre, "FOV Pre", M_PI_4_F);
  SOCKET_FLOAT(fov_post, "FOV Post", M_PI_4_F);

  SOCKET_FLOAT(fisheye_polynomial_k0, "Fisheye Polynomial K0", 0.0f);
  SOCKET_FLOAT(fisheye_polynomial_k1, "Fisheye Polynomial K1", 0.0f);
  SOCKET_FLOAT(fisheye_polynomial_k2, "Fisheye Polynomial K2", 0.0f);
  SOCKET_FLOAT(fisheye_polynomial_k3, "Fisheye Polynomial K3", 0.0f);
  SOCKET_FLOAT(fisheye_polynomial_k4, "Fisheye Polynomial K4", 0.0f);

  static NodeEnum stereo_eye_enum;
  stereo_eye_enum.insert("none", STEREO_NONE);
  stereo_eye_enum.insert("left", STEREO_LEFT);
  stereo_eye_enum.insert("right", STEREO_RIGHT);
  SOCKET_ENUM(stereo_eye, "Stereo Eye", stereo_eye_enum, STEREO_NONE);

  SOCKET_BOOLEAN(use_spherical_stereo, "Use Spherical Stereo", false);

  SOCKET_FLOAT(interocular_distance, "Interocular Distance", 0.065f);
  SOCKET_FLOAT(convergence_distance, "Convergence Distance", 30.0f * 0.065f);

  SOCKET_BOOLEAN(use_pole_merge, "Use Pole Merge", false);
  SOCKET_FLOAT(pole_merge_angle_from, "Pole Merge Angle From", 60.0f * M_PI_F / 180.0f);
  SOCKET_FLOAT(pole_merge_angle_to, "Pole Merge Angle To", 75.0f * M_PI_F / 180.0f);

  SOCKET_FLOAT(sensorwidth, "Sensor Width", 0.036f);
  SOCKET_FLOAT(sensorheight, "Sensor Height", 0.024f);

  SOCKET_FLOAT(nearclip, "Near Clip", 1e-5f);
  SOCKET_FLOAT(farclip, "Far Clip", 1e5f);

  SOCKET_FLOAT(viewplane.left, "Viewplane Left", 0);
  SOCKET_FLOAT(viewplane.right, "Viewplane Right", 0);
  SOCKET_FLOAT(viewplane.bottom, "Viewplane Bottom", 0);
  SOCKET_FLOAT(viewplane.top, "Viewplane Top", 0);

  SOCKET_FLOAT(border.left, "Border Left", 0);
  SOCKET_FLOAT(border.right, "Border Right", 0);
  SOCKET_FLOAT(border.bottom, "Border Bottom", 0);
  SOCKET_FLOAT(border.top, "Border Top", 0);

  SOCKET_FLOAT(viewport_camera_border.left, "Viewport Border Left", 0);
  SOCKET_FLOAT(viewport_camera_border.right, "Viewport Border Right", 0);
  SOCKET_FLOAT(viewport_camera_border.bottom, "Viewport Border Bottom", 0);
  SOCKET_FLOAT(viewport_camera_border.top, "Viewport Border Top", 0);

  SOCKET_FLOAT(offscreen_dicing_scale, "Offscreen Dicing Scale", 1.0f);

  SOCKET_INT(full_width, "Full Width", 1024);
  SOCKET_INT(full_height, "Full Height", 512);

  SOCKET_BOOLEAN(use_perspective_motion, "Use Perspective Motion", false);

  return type;
}

Camera::Camera() : Node(get_node_type())
{
  shutter_table_offset = TABLE_OFFSET_INVALID;

  width = 1024;
  height = 512;

  use_perspective_motion = false;

  shutter_curve.resize(RAMP_TABLE_SIZE);
  for (int i = 0; i < shutter_curve.size(); ++i) {
    shutter_curve[i] = 1.0f;
  }

  compute_auto_viewplane();

  screentoworld = projection_identity();
  rastertoworld = projection_identity();
  ndctoworld = projection_identity();
  rastertocamera = projection_identity();
  cameratoworld = transform_identity();
  worldtoraster = projection_identity();

  full_rastertocamera = projection_identity();

  dx = zero_float3();
  dy = zero_float3();

  need_device_update = true;
  need_flags_update = true;
  previous_need_motion = -1;

  memset((void *)&kernel_camera, 0, sizeof(kernel_camera));
}

Camera::~Camera()
{
}

void Camera::compute_auto_viewplane()
{
  if (camera_type == CAMERA_PANORAMA) {
    viewplane.left = 0.0f;
    viewplane.right = 1.0f;
    viewplane.bottom = 0.0f;
    viewplane.top = 1.0f;
  }
  else {
    float aspect = (float)full_width / (float)full_height;
    if (full_width >= full_height) {
      viewplane.left = -aspect;
      viewplane.right = aspect;
      viewplane.bottom = -1.0f;
      viewplane.top = 1.0f;
    }
    else {
      viewplane.left = -1.0f;
      viewplane.right = 1.0f;
      viewplane.bottom = -1.0f / aspect;
      viewplane.top = 1.0f / aspect;
    }
  }
}

void Camera::update(Scene *scene)
{
  Scene::MotionType need_motion = scene->need_motion();

  if (previous_need_motion != need_motion) {
    /* scene's motion model could have been changed since previous device
     * camera update this could happen for example in case when one render
     * layer has got motion pass and another not */
    need_device_update = true;
  }

  if (!is_modified())
    return;

  scoped_callback_timer timer([scene](double time) {
    if (scene->update_stats) {
      scene->update_stats->camera.times.add_entry({"update", time});
    }
  });

  /* Full viewport to camera border in the viewport. */
  Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
  Transform bordertofull = transform_inverse(fulltoborder);

  /* NDC to raster. */
  Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
  Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;

  /* Raster to screen. */
  Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);

  Transform screentoraster = ndctoraster * screentondc;
  Transform rastertoscreen = transform_inverse(screentoraster);
  Transform full_screentoraster = full_ndctoraster * screentondc;
  Transform full_rastertoscreen = transform_inverse(full_screentoraster);

  /* Screen to camera. */
  ProjectionTransform cameratoscreen;
  if (camera_type == CAMERA_PERSPECTIVE)
    cameratoscreen = projection_perspective(fov, nearclip, farclip);
  else if (camera_type == CAMERA_ORTHOGRAPHIC)
    cameratoscreen = projection_orthographic(nearclip, farclip);
  else
    cameratoscreen = projection_identity();

  ProjectionTransform screentocamera = projection_inverse(cameratoscreen);

  rastertocamera = screentocamera * rastertoscreen;
  full_rastertocamera = screentocamera * full_rastertoscreen;
  cameratoraster = screentoraster * cameratoscreen;

  cameratoworld = matrix;
  screentoworld = cameratoworld * screentocamera;
  rastertoworld = cameratoworld * rastertocamera;
  ndctoworld = rastertoworld * ndctoraster;

  /* note we recompose matrices instead of taking inverses of the above, this
   * is needed to avoid inverting near degenerate matrices that happen due to
   * precision issues with large scenes */
  worldtocamera = transform_inverse(matrix);
  worldtoscreen = cameratoscreen * worldtocamera;
  worldtondc = screentondc * worldtoscreen;
  worldtoraster = ndctoraster * worldtondc;

  /* differentials */
  if (camera_type == CAMERA_ORTHOGRAPHIC) {
    dx = transform_perspective_direction(&rastertocamera, make_float3(1, 0, 0));
    dy = transform_perspective_direction(&rastertocamera, make_float3(0, 1, 0));
    full_dx = transform_perspective_direction(&full_rastertocamera, make_float3(1, 0, 0));
    full_dy = transform_perspective_direction(&full_rastertocamera, make_float3(0, 1, 0));
  }
  else if (camera_type == CAMERA_PERSPECTIVE) {
    dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
         transform_perspective(&rastertocamera, make_float3(0, 0, 0));
    dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
         transform_perspective(&rastertocamera, make_float3(0, 0, 0));
    full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
              transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
    full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
              transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
  }
  else {
    dx = zero_float3();
    dy = zero_float3();
  }

  dx = transform_direction(&cameratoworld, dx);
  dy = transform_direction(&cameratoworld, dy);
  full_dx = transform_direction(&cameratoworld, full_dx);
  full_dy = transform_direction(&cameratoworld, full_dy);

  if (camera_type == CAMERA_PERSPECTIVE) {
    float3 v = transform_perspective(&full_rastertocamera,
                                     make_float3(full_width, full_height, 1.0f));
    frustum_right_normal = normalize(make_float3(v.z, 0.0f, -v.x));
    frustum_top_normal = normalize(make_float3(0.0f, v.z, -v.y));

    v = transform_perspective(&full_rastertocamera, make_float3(0.0f, 0.0f, 1.0f));
    frustum_left_normal = normalize(make_float3(-v.z, 0.0f, v.x));
    frustum_bottom_normal = normalize(make_float3(0.0f, -v.z, v.y));
  }

  /* Compute kernel camera data. */
  KernelCamera *kcam = &kernel_camera;

  /* store matrices */
  kcam->screentoworld = screentoworld;
  kcam->rastertoworld = rastertoworld;
  kcam->rastertocamera = rastertocamera;
  kcam->cameratoworld = cameratoworld;
  kcam->worldtocamera = worldtocamera;
  kcam->worldtoscreen = worldtoscreen;
  kcam->worldtoraster = worldtoraster;
  kcam->worldtondc = worldtondc;
  kcam->ndctoworld = ndctoworld;

  /* camera motion */
  kcam->num_motion_steps = 0;
  kcam->have_perspective_motion = 0;
  kernel_camera_motion.clear();

  /* Test if any of the transforms are actually different. */
  bool have_motion = false;
  for (size_t i = 0; i < motion.size(); i++) {
    have_motion = have_motion || motion[i] != matrix;
  }

  if (need_motion == Scene::MOTION_PASS) {
    /* TODO(sergey): Support perspective (zoom, fov) motion. */
    if (camera_type == CAMERA_PANORAMA) {
      if (have_motion) {
        kcam->motion_pass_pre = transform_inverse(motion[0]);
        kcam->motion_pass_post = transform_inverse(motion[motion.size() - 1]);
      }
      else {
        kcam->motion_pass_pre = kcam->worldtocamera;
        kcam->motion_pass_post = kcam->worldtocamera;
      }
    }
    else {
      if (have_motion) {
        kcam->perspective_pre = cameratoraster * transform_inverse(motion[0]);
        kcam->perspective_post = cameratoraster * transform_inverse(motion[motion.size() - 1]);
      }
      else {
        kcam->perspective_pre = worldtoraster;
        kcam->perspective_post = worldtoraster;
      }
    }
  }
  else if (need_motion == Scene::MOTION_BLUR) {
    if (have_motion) {
      kernel_camera_motion.resize(motion.size());
      transform_motion_decompose(kernel_camera_motion.data(), motion.data(), motion.size());
      kcam->num_motion_steps = motion.size();
    }

    /* TODO(sergey): Support other types of camera. */
    if (use_perspective_motion && camera_type == CAMERA_PERSPECTIVE) {
      /* TODO(sergey): Move to an utility function and de-duplicate with
       * calculation above.
       */
      ProjectionTransform screentocamera_pre = projection_inverse(
          projection_perspective(fov_pre, nearclip, farclip));
      ProjectionTransform screentocamera_post = projection_inverse(
          projection_perspective(fov_post, nearclip, farclip));

      kcam->perspective_pre = screentocamera_pre * rastertoscreen;
      kcam->perspective_post = screentocamera_post * rastertoscreen;
      kcam->have_perspective_motion = 1;
    }
  }

  /* depth of field */
  kcam->aperturesize = aperturesize;
  kcam->focaldistance = focaldistance;
  kcam->blades = (blades < 3) ? 0.0f : blades;
  kcam->bladesrotation = bladesrotation;

  /* motion blur */
  kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime : -1.0f;
  kcam->motion_position = motion_position;

  /* type */
  kcam->type = camera_type;

  /* anamorphic lens bokeh */
  kcam->inv_aperture_ratio = 1.0f / aperture_ratio;

  /* panorama */
  kcam->panorama_type = panorama_type;
  kcam->fisheye_fov = fisheye_fov;
  kcam->fisheye_lens = fisheye_lens;
  kcam->equirectangular_range = make_float4(longitude_min - longitude_max,
                                            -longitude_min,
                                            latitude_min - latitude_max,
                                            -latitude_min + M_PI_2_F);
  kcam->fisheye_lens_polynomial_bias = fisheye_polynomial_k0;
  kcam->fisheye_lens_polynomial_coefficients = make_float4(
      fisheye_polynomial_k1, fisheye_polynomial_k2, fisheye_polynomial_k3, fisheye_polynomial_k4);

  switch (stereo_eye) {
    case STEREO_LEFT:
      kcam->interocular_offset = -interocular_distance * 0.5f;
      break;
    case STEREO_RIGHT:
      kcam->interocular_offset = interocular_distance * 0.5f;
      break;
    case STEREO_NONE:
    default:
      kcam->interocular_offset = 0.0f;
      break;
  }

  kcam->convergence_distance = convergence_distance;
  if (use_pole_merge) {
    kcam->pole_merge_angle_from = pole_merge_angle_from;
    kcam->pole_merge_angle_to = pole_merge_angle_to;
  }
  else {
    kcam->pole_merge_angle_from = -1.0f;
    kcam->pole_merge_angle_to = -1.0f;
  }

  /* sensor size */
  kcam->sensorwidth = sensorwidth;
  kcam->sensorheight = sensorheight;

  /* render size */
  kcam->width = width;
  kcam->height = height;

  /* store differentials */
  kcam->dx = float3_to_float4(dx);
  kcam->dy = float3_to_float4(dy);

  /* clipping */
  kcam->nearclip = nearclip;
  kcam->cliplength = (farclip == FLT_MAX) ? FLT_MAX : farclip - nearclip;

  /* Camera in volume. */
  kcam->is_inside_volume = 0;

  /* Rolling shutter effect */
  kcam->rolling_shutter_type = rolling_shutter_type;
  kcam->rolling_shutter_duration = rolling_shutter_duration;

  /* Set further update flags */
  clear_modified();
  need_device_update = true;
  need_flags_update = true;
  previous_need_motion = need_motion;
}

void Camera::device_update(Device * /* device */, DeviceScene *dscene, Scene *scene)
{
  update(scene);

  if (!need_device_update)
    return;

  scoped_callback_timer timer([scene](double time) {
    if (scene->update_stats) {
      scene->update_stats->camera.times.add_entry({"device_update", time});
    }
  });

  scene->lookup_tables->remove_table(&shutter_table_offset);
  if (kernel_camera.shuttertime != -1.0f) {
    vector<float> shutter_table;
    util_cdf_inverted(SHUTTER_TABLE_SIZE,
                      0.0f,
                      1.0f,
                      function_bind(shutter_curve_eval, _1, shutter_curve),
                      false,
                      shutter_table);
    shutter_table_offset = scene->lookup_tables->add_table(dscene, shutter_table);
    kernel_camera.shutter_table_offset = (int)shutter_table_offset;
  }

  dscene->data.cam = kernel_camera;

  size_t num_motion_steps = kernel_camera_motion.size();
  if (num_motion_steps) {
    DecomposedTransform *camera_motion = dscene->camera_motion.alloc(num_motion_steps);
    memcpy(camera_motion, kernel_camera_motion.data(), sizeof(*camera_motion) * num_motion_steps);
    dscene->camera_motion.copy_to_device();
  }
  else {
    dscene->camera_motion.free();
  }
}

void Camera::device_update_volume(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
  if (!need_device_update && !need_flags_update) {
    return;
  }

  KernelIntegrator *kintegrator = &dscene->data.integrator;
  if (kintegrator->use_volumes) {
    KernelCamera *kcam = &dscene->data.cam;
    BoundBox viewplane_boundbox = viewplane_bounds_get();

    /* Parallel object update, with grain size to avoid too much threading overhead
     * for individual objects. */
    static const int OBJECTS_PER_TASK = 32;
    parallel_for(blocked_range<size_t>(0, scene->objects.size(), OBJECTS_PER_TASK),
                 [&](const blocked_range<size_t> &r) {
                   for (size_t i = r.begin(); i != r.end(); i++) {
                     Object *object = scene->objects[i];
                     if (object->get_geometry()->has_volume &&
                         viewplane_boundbox.intersects(object->bounds)) {
                       /* TODO(sergey): Consider adding more grained check. */
                       VLOG_INFO << "Detected camera inside volume.";
                       kcam->is_inside_volume = 1;
                       parallel_for_cancel();
                       break;
                     }
                   }
                 });

    if (!kcam->is_inside_volume) {
      VLOG_INFO << "Camera is outside of the volume.";
    }
  }

  need_device_update = false;
  need_flags_update = false;
}

void Camera::device_free(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
  scene->lookup_tables->remove_table(&shutter_table_offset);
  dscene->camera_motion.free();
}

float3 Camera::transform_raster_to_world(float raster_x, float raster_y)
{
  float3 D, P;
  if (camera_type == CAMERA_PERSPECTIVE) {
    D = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
    float3 Pclip = normalize(D);
    P = zero_float3();
    /* TODO(sergey): Aperture support? */
    P = transform_point(&cameratoworld, P);
    D = normalize(transform_direction(&cameratoworld, D));
    /* TODO(sergey): Clipping is conditional in kernel, and hence it could
     * be mistakes in here, currently leading to wrong camera-in-volume
     * detection.
     */
    P += nearclip * D / Pclip.z;
  }
  else if (camera_type == CAMERA_ORTHOGRAPHIC) {
    D = make_float3(0.0f, 0.0f, 1.0f);
    /* TODO(sergey): Aperture support? */
    P = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
    P = transform_point(&cameratoworld, P);
    D = normalize(transform_direction(&cameratoworld, D));
  }
  else {
    assert(!"unsupported camera type");
  }
  return P;
}

BoundBox Camera::viewplane_bounds_get()
{
  /* TODO(sergey): This is all rather stupid, but is there a way to perform
   * checks we need in a more clear and smart fashion? */
  BoundBox bounds = BoundBox::empty;

  if (camera_type == CAMERA_PANORAMA) {
    if (use_spherical_stereo == false) {
      bounds.grow(make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w), nearclip);
    }
    else {
      float half_eye_distance = interocular_distance * 0.5f;

      bounds.grow(
          make_float3(cameratoworld.x.w + half_eye_distance, cameratoworld.y.w, cameratoworld.z.w),
          nearclip);

      bounds.grow(
          make_float3(cameratoworld.z.w, cameratoworld.y.w + half_eye_distance, cameratoworld.z.w),
          nearclip);

      bounds.grow(
          make_float3(cameratoworld.x.w - half_eye_distance, cameratoworld.y.w, cameratoworld.z.w),
          nearclip);

      bounds.grow(
          make_float3(cameratoworld.x.w, cameratoworld.y.w - half_eye_distance, cameratoworld.z.w),
          nearclip);
    }
  }
  else {
    bounds.grow(transform_raster_to_world(0.0f, 0.0f));
    bounds.grow(transform_raster_to_world(0.0f, (float)height));
    bounds.grow(transform_raster_to_world((float)width, (float)height));
    bounds.grow(transform_raster_to_world((float)width, 0.0f));
    if (camera_type == CAMERA_PERSPECTIVE) {
      /* Center point has the most distance in local Z axis,
       * use it to construct bounding box/
       */
      bounds.grow(transform_raster_to_world(0.5f * width, 0.5f * height));
    }
  }
  return bounds;
}

float Camera::world_to_raster_size(float3 P)
{
  float res = 1.0f;

  if (camera_type == CAMERA_ORTHOGRAPHIC) {
    res = min(len(full_dx), len(full_dy));

    if (offscreen_dicing_scale > 1.0f) {
      float3 p = transform_point(&worldtocamera, P);
      float3 v1 = transform_perspective(&full_rastertocamera,
                                        make_float3(full_width, full_height, 0.0f));
      float3 v2 = transform_perspective(&full_rastertocamera, zero_float3());

      /* Create point clamped to frustum */
      float3 c;
      c.x = max(v2.x, min(v1.x, p.x));
      c.y = max(v2.y, min(v1.y, p.y));
      c.z = max(0.0f, p.z);

      /* Check right side */
      float f_dist = len(p - c) / sqrtf((v1.x * v1.x + v1.y * v1.y) * 0.5f);
      if (f_dist < 0.0f) {
        /* Check left side */
        f_dist = len(p - c) / sqrtf((v2.x * v2.x + v2.y * v2.y) * 0.5f);
      }
      if (f_dist > 0.0f) {
        res += res * f_dist * (offscreen_dicing_scale - 1.0f);
      }
    }
  }
  else if (camera_type == CAMERA_PERSPECTIVE) {
    /* Calculate as if point is directly ahead of the camera. */
    float3 raster = make_float3(0.5f * full_width, 0.5f * full_height, 0.0f);
    float3 Pcamera = transform_perspective(&full_rastertocamera, raster);

    /* dDdx */
    float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
    float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
    float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);

    /* dPdx */
    float dist = len(transform_point(&worldtocamera, P));
    float3 D = normalize(Ddiff);
    res = len(dist * dDdx - dot(dist * dDdx, D) * D);

    /* Decent approx distance to frustum
     * (doesn't handle corners correctly, but not that big of a deal) */
    float f_dist = 0.0f;

    if (offscreen_dicing_scale > 1.0f) {
      float3 p = transform_point(&worldtocamera, P);

      /* Distance from the four planes */
      float r = dot(p, frustum_right_normal);
      float t = dot(p, frustum_top_normal);
      float l = dot(p, frustum_left_normal);
      float b = dot(p, frustum_bottom_normal);

      if (r <= 0.0f && l <= 0.0f && t <= 0.0f && b <= 0.0f) {
        /* Point is inside frustum */
        f_dist = 0.0f;
      }
      else if (r > 0.0f && l > 0.0f && t > 0.0f && b > 0.0f) {
        /* Point is behind frustum */
        f_dist = len(p);
      }
      else {
        /* Point may be behind or off to the side, need to check */
        float3 along_right = make_float3(-frustum_right_normal.z, 0.0f, frustum_right_normal.x);
        float3 along_left = make_float3(frustum_left_normal.z, 0.0f, -frustum_left_normal.x);
        float3 along_top = make_float3(0.0f, -frustum_top_normal.z, frustum_top_normal.y);
        float3 along_bottom = make_float3(0.0f, frustum_bottom_normal.z, -frustum_bottom_normal.y);

        float dist[] = {r, l, t, b};
        float3 along[] = {along_right, along_left, along_top, along_bottom};

        bool test_o = false;

        float *d = dist;
        float3 *a = along;
        for (int i = 0; i < 4; i++, d++, a++) {
          /* Test if we should check this side at all */
          if (*d > 0.0f) {
            if (dot(p, *a) >= 0.0f) {
              /* We are in front of the back edge of this side of the frustum */
              f_dist = max(f_dist, *d);
            }
            else {
              /* Possibly far enough behind the frustum to use distance to origin instead of edge
               */
              test_o = true;
            }
          }
        }

        if (test_o) {
          f_dist = (f_dist > 0) ? min(f_dist, len(p)) : len(p);
        }
      }

      if (f_dist > 0.0f) {
        res += len(dDdx - dot(dDdx, D) * D) * f_dist * (offscreen_dicing_scale - 1.0f);
      }
    }
  }
  else if (camera_type == CAMERA_PANORAMA) {
    float3 D = transform_point(&worldtocamera, P);
    float dist = len(D);

    Ray ray;
    memset(&ray, 0, sizeof(ray));

    /* Distortion can become so great that the results become meaningless, there
     * may be a better way to do this, but calculating differentials from the
     * point directly ahead seems to produce good enough results. */
#if 0
    float2 dir = direction_to_panorama(&kernel_camera, kernel_camera_motion.data(), normalize(D));
    float3 raster = transform_perspective(&full_cameratoraster, make_float3(dir.x, dir.y, 0.0f));

    ray.t = 1.0f;
    camera_sample_panorama(
        &kernel_camera, kernel_camera_motion.data(), raster.x, raster.y, 0.0f, 0.0f, &ray);
    if (ray.t == 0.0f) {
      /* No differentials, just use from directly ahead. */
      camera_sample_panorama(&kernel_camera,
                             kernel_camera_motion.data(),
                             0.5f * full_width,
                             0.5f * full_height,
                             0.0f,
                             0.0f,
                             &ray);
    }
#else
    camera_sample_panorama(&kernel_camera,
#  ifdef __CAMERA_MOTION__
                           kernel_camera_motion.data(),
#  endif
                           0.5f * full_width,
                           0.5f * full_height,
                           0.0f,
                           0.0f,
                           &ray);
#endif

    /* TODO: would it help to use more accurate differentials here? */
    differential3 dP;
    differential_transfer_compact(&dP, ray.dP, ray.D, ray.dD, ray.D, dist);

    return max(len(dP.dx), len(dP.dy));
  }

  return res;
}

bool Camera::use_motion() const
{
  return motion.size() > 1;
}

void Camera::set_screen_size(int width_, int height_)
{
  if (width_ != width || height_ != height) {
    width = width_;
    height = height_;
    tag_modified();
  }
}

float Camera::motion_time(int step) const
{
  return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
}

int Camera::motion_step(float time) const
{
  if (use_motion()) {
    for (int step = 0; step < motion.size(); step++) {
      if (time == motion_time(step)) {
        return step;
      }
    }
  }

  return -1;
}

CCL_NAMESPACE_END