Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_intersect.h « util « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0727debf7753f0b5a0cddb31fab99b6bf8bc4168 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#ifndef __UTIL_MATH_INTERSECT_H__
#define __UTIL_MATH_INTERSECT_H__

CCL_NAMESPACE_BEGIN

/* Ray Intersection */

ccl_device bool ray_sphere_intersect(float3 ray_P,
                                     float3 ray_D,
                                     float ray_tmin,
                                     float ray_tmax,
                                     float3 sphere_P,
                                     float sphere_radius,
                                     ccl_private float3 *isect_P,
                                     ccl_private float *isect_t)
{
  const float3 d = sphere_P - ray_P;
  const float radiussq = sphere_radius * sphere_radius;
  const float tsq = dot(d, d);

  if (tsq > radiussq) {
    /* Ray origin outside sphere. */
    const float tp = dot(d, ray_D);
    if (tp < 0.0f) {
      /* Ray  points away from sphere. */
      return false;
    }
    const float dsq = tsq - tp * tp; /* Pythagoras. */
    if (dsq > radiussq) {
      /* Closest point on ray outside sphere. */
      return false;
    }
    const float t = tp - sqrtf(radiussq - dsq); /* pythagoras */
    if (t > ray_tmin && t < ray_tmax) {
      *isect_t = t;
      *isect_P = ray_P + ray_D * t;
      return true;
    }
  }
  return false;
}

ccl_device bool ray_aligned_disk_intersect(float3 ray_P,
                                           float3 ray_D,
                                           float ray_tmin,
                                           float ray_tmax,
                                           float3 disk_P,
                                           float disk_radius,
                                           ccl_private float3 *isect_P,
                                           ccl_private float *isect_t)
{
  /* Aligned disk normal. */
  float disk_t;
  const float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
  const float div = dot(ray_D, disk_N);
  if (UNLIKELY(div == 0.0f)) {
    return false;
  }
  /* Compute t to intersection point. */
  const float t = -disk_t / div;
  if (!(t > ray_tmin && t < ray_tmax)) {
    return false;
  }
  /* Test if within radius. */
  float3 P = ray_P + ray_D * t;
  if (len_squared(P - disk_P) > disk_radius * disk_radius) {
    return false;
  }
  *isect_P = P;
  *isect_t = t;
  return true;
}

ccl_device bool ray_disk_intersect(float3 ray_P,
                                   float3 ray_D,
                                   float ray_tmin,
                                   float ray_tmax,
                                   float3 disk_P,
                                   float3 disk_N,
                                   float disk_radius,
                                   ccl_private float3 *isect_P,
                                   ccl_private float *isect_t)
{
  const float3 vp = ray_P - disk_P;
  const float dp = dot(vp, disk_N);
  const float cos_angle = dot(disk_N, -ray_D);
  if (dp * cos_angle > 0.f)  // front of light
  {
    float t = dp / cos_angle;
    if (t < 0.f) { /* Ray points away from the light. */
      return false;
    }
    float3 P = ray_P + t * ray_D;
    float3 T = P - disk_P;

    if (dot(T, T) < sqr(disk_radius) && (t > ray_tmin && t < ray_tmax)) {
      *isect_P = ray_P + t * ray_D;
      *isect_t = t;
      return true;
    }
  }
  return false;
}

/* Custom rcp, cross and dot implementations that match Embree bit for bit. */
ccl_device_forceinline float ray_triangle_rcp(const float x)
{
#ifdef __KERNEL_NEON__
  /* Move scalar to vector register and do rcp. */
  __m128 a;
  a[0] = x;
  float32x4_t reciprocal = vrecpeq_f32(a);
  reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
  reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
  return reciprocal[0];
#elif defined(__KERNEL_SSE__)
  const __m128 a = _mm_set_ss(x);
  const __m128 r = _mm_rcp_ss(a);

#  ifdef __KERNEL_AVX2_
  return _mm_cvtss_f32(_mm_mul_ss(r, _mm_fnmadd_ss(r, a, _mm_set_ss(2.0f))));
#  else
  return _mm_cvtss_f32(_mm_mul_ss(r, _mm_sub_ss(_mm_set_ss(2.0f), _mm_mul_ss(r, a))));
#  endif
#else
  return 1.0f / x;
#endif
}

ccl_device_inline float ray_triangle_dot(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
  return madd(make_float4(a.x),
              make_float4(b.x),
              madd(make_float4(a.y), make_float4(b.y), make_float4(a.z) * make_float4(b.z)))[0];
#else
  return a.x * b.x + a.y * b.y + a.z * b.z;
#endif
}

ccl_device_inline float3 ray_triangle_cross(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
  return make_float3(
      msub(make_float4(a.y), make_float4(b.z), make_float4(a.z) * make_float4(b.y))[0],
      msub(make_float4(a.z), make_float4(b.x), make_float4(a.x) * make_float4(b.z))[0],
      msub(make_float4(a.x), make_float4(b.y), make_float4(a.y) * make_float4(b.x))[0]);
#else
  return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
#endif
}

ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
                                                   const float3 ray_D,
                                                   const float ray_tmin,
                                                   const float ray_tmax,
                                                   const float3 tri_a,
                                                   const float3 tri_b,
                                                   const float3 tri_c,
                                                   ccl_private float *isect_u,
                                                   ccl_private float *isect_v,
                                                   ccl_private float *isect_t)
{
  /* This implementation matches the Plücker coordinates triangle intersection
   * in Embree. */

  /* Calculate vertices relative to ray origin. */
  const float3 v0 = tri_a - ray_P;
  const float3 v1 = tri_b - ray_P;
  const float3 v2 = tri_c - ray_P;

  /* Calculate triangle edges. */
  const float3 e0 = v2 - v0;
  const float3 e1 = v0 - v1;
  const float3 e2 = v1 - v2;

  /* Perform edge tests. */
  const float U = ray_triangle_dot(ray_triangle_cross(e0, v2 + v0), ray_D);
  const float V = ray_triangle_dot(ray_triangle_cross(e1, v0 + v1), ray_D);
  const float W = ray_triangle_dot(ray_triangle_cross(e2, v1 + v2), ray_D);

  const float UVW = U + V + W;
  const float eps = FLT_EPSILON * fabsf(UVW);
  const float minUVW = min(U, min(V, W));
  const float maxUVW = max(U, max(V, W));

  if (!(minUVW >= -eps || maxUVW <= eps)) {
    return false;
  }

  /* Calculate geometry normal and denominator. */
  const float3 Ng1 = ray_triangle_cross(e1, e0);
  const float3 Ng = Ng1 + Ng1;
  const float den = dot(Ng, ray_D);
  /* Avoid division by 0. */
  if (UNLIKELY(den == 0.0f)) {
    return false;
  }

  /* Perform depth test. */
  const float T = dot(v0, Ng);
  const float t = T / den;
  if (!(t >= ray_tmin && t <= ray_tmax)) {
    return false;
  }

  const float rcp_uvw = (fabsf(UVW) < 1e-18f) ? 0.0f : ray_triangle_rcp(UVW);
  *isect_u = min(U * rcp_uvw, 1.0f);
  *isect_v = min(V * rcp_uvw, 1.0f);
  *isect_t = t;
  return true;
}

ccl_device_forceinline bool ray_triangle_intersect_self(const float3 ray_P,
                                                        const float3 ray_D,
                                                        const float3 tri_a,
                                                        const float3 tri_b,
                                                        const float3 tri_c)
{
  /* Matches logic in ray_triangle_intersect, self intersection test to validate
   * if a ray is going to hit self or might incorrectly hit a neighboring triangle. */

  /* Calculate vertices relative to ray origin. */
  const float3 v0 = tri_a - ray_P;
  const float3 v1 = tri_b - ray_P;
  const float3 v2 = tri_c - ray_P;

  /* Calculate triangle edges. */
  const float3 e0 = v2 - v0;
  const float3 e1 = v0 - v1;
  const float3 e2 = v1 - v2;

  /* Perform edge tests. */
  const float U = ray_triangle_dot(ray_triangle_cross(v2 + v0, e0), ray_D);
  const float V = ray_triangle_dot(ray_triangle_cross(v0 + v1, e1), ray_D);
  const float W = ray_triangle_dot(ray_triangle_cross(v1 + v2, e2), ray_D);

  const float eps = FLT_EPSILON * fabsf(U + V + W);
  const float minUVW = min(U, min(V, W));
  const float maxUVW = max(U, max(V, W));

  /* Note the extended epsilon compared to ray_triangle_intersect, to account
   * for intersections with neighboring triangles that have an epsilon. */
  return (minUVW >= eps || maxUVW <= -eps);
}

/* Tests for an intersection between a ray and a quad defined by
 * its midpoint, normal and sides.
 * If ellipse is true, hits outside the ellipse that's enclosed by the
 * quad are rejected.
 */
ccl_device bool ray_quad_intersect(float3 ray_P,
                                   float3 ray_D,
                                   float ray_tmin,
                                   float ray_tmax,
                                   float3 quad_P,
                                   float3 quad_u,
                                   float3 quad_v,
                                   float3 quad_n,
                                   ccl_private float3 *isect_P,
                                   ccl_private float *isect_t,
                                   ccl_private float *isect_u,
                                   ccl_private float *isect_v,
                                   bool ellipse)
{
  /* Perform intersection test. */
  float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
  if (!(t > ray_tmin && t < ray_tmax)) {
    return false;
  }
  const float3 hit = ray_P + t * ray_D;
  const float3 inplane = hit - quad_P;
  const float u = dot(inplane, quad_u) / dot(quad_u, quad_u);
  if (u < -0.5f || u > 0.5f) {
    return false;
  }
  const float v = dot(inplane, quad_v) / dot(quad_v, quad_v);
  if (v < -0.5f || v > 0.5f) {
    return false;
  }
  if (ellipse && (u * u + v * v > 0.25f)) {
    return false;
  }
  /* Store the result. */
  /* TODO(sergey): Check whether we can avoid some checks here. */
  if (isect_P != NULL)
    *isect_P = hit;
  if (isect_t != NULL)
    *isect_t = t;

  /* NOTE: Return barycentric coordinates in the same notation as Embree and OptiX. */
  if (isect_u != NULL)
    *isect_u = v + 0.5f;
  if (isect_v != NULL)
    *isect_v = -u - v;

  return true;
}

CCL_NAMESPACE_END

#endif /* __UTIL_MATH_INTERSECT_H__ */