Welcome to mirror list, hosted at ThFree Co, Russian Federation.

transform.h « util « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 24184dc70746fed68055eb290f14dc264fe095df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/* SPDX-License-Identifier: Apache-2.0
 * Copyright 2011-2022 Blender Foundation */

#ifndef __UTIL_TRANSFORM_H__
#define __UTIL_TRANSFORM_H__

#ifndef __KERNEL_GPU__
#  include <string.h>
#endif

#include "util/math.h"
#include "util/types.h"

#ifndef __KERNEL_GPU__
#  include "util/system.h"
#endif

CCL_NAMESPACE_BEGIN

/* Affine transformation, stored as 4x3 matrix. */

typedef struct Transform {
  float4 x, y, z;

#ifndef __KERNEL_GPU__
  float4 operator[](int i) const
  {
    return *(&x + i);
  }
  float4 &operator[](int i)
  {
    return *(&x + i);
  }
#endif
} Transform;

/* Transform decomposed in rotation/translation/scale. we use the same data
 * structure as Transform, and tightly pack decomposition into it. first the
 * rotation (4), then translation (3), then 3x3 scale matrix (9). */

typedef struct DecomposedTransform {
  float4 x, y, z, w;
} DecomposedTransform;

CCL_NAMESPACE_END

#include "util/transform_inverse.h"

CCL_NAMESPACE_BEGIN

/* Functions */

#ifdef __KERNEL_METAL__
/* transform_point specialized for ccl_global */
ccl_device_inline float3 transform_point(ccl_global const Transform *t, const float3 a)
{
  ccl_global const float3x3 &b(*(ccl_global const float3x3 *)t);
  return (a * b).xyz + make_float3(t->x.w, t->y.w, t->z.w);
}
#endif

ccl_device_inline float3 transform_point(ccl_private const Transform *t, const float3 a)
{
  /* TODO(sergey): Disabled for now, causes crashes in certain cases. */
#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
  ssef x, y, z, w, aa;
  aa = a.m128;

  x = _mm_loadu_ps(&t->x.x);
  y = _mm_loadu_ps(&t->y.x);
  z = _mm_loadu_ps(&t->z.x);
  w = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);

  _MM_TRANSPOSE4_PS(x, y, z, w);

  ssef tmp = w;
  tmp = madd(shuffle<2>(aa), z, tmp);
  tmp = madd(shuffle<1>(aa), y, tmp);
  tmp = madd(shuffle<0>(aa), x, tmp);

  return float3(tmp.m128);
#elif defined(__KERNEL_METAL__)
  ccl_private const float3x3 &b(*(ccl_private const float3x3 *)t);
  return (a * b).xyz + make_float3(t->x.w, t->y.w, t->z.w);
#else
  float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z + t->x.w,
                         a.x * t->y.x + a.y * t->y.y + a.z * t->y.z + t->y.w,
                         a.x * t->z.x + a.y * t->z.y + a.z * t->z.z + t->z.w);

  return c;
#endif
}

ccl_device_inline float3 transform_direction(ccl_private const Transform *t, const float3 a)
{
#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
  ssef x, y, z, w, aa;
  aa = a.m128;
  x = _mm_loadu_ps(&t->x.x);
  y = _mm_loadu_ps(&t->y.x);
  z = _mm_loadu_ps(&t->z.x);
  w = _mm_setzero_ps();

  _MM_TRANSPOSE4_PS(x, y, z, w);

  ssef tmp = shuffle<2>(aa) * z;
  tmp = madd(shuffle<1>(aa), y, tmp);
  tmp = madd(shuffle<0>(aa), x, tmp);

  return float3(tmp.m128);
#elif defined(__KERNEL_METAL__)
  ccl_private const float3x3 &b(*(ccl_private const float3x3 *)t);
  return (a * b).xyz;
#else
  float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z,
                         a.x * t->y.x + a.y * t->y.y + a.z * t->y.z,
                         a.x * t->z.x + a.y * t->z.y + a.z * t->z.z);

  return c;
#endif
}

ccl_device_inline float3 transform_direction_transposed(ccl_private const Transform *t,
                                                        const float3 a)
{
  float3 x = make_float3(t->x.x, t->y.x, t->z.x);
  float3 y = make_float3(t->x.y, t->y.y, t->z.y);
  float3 z = make_float3(t->x.z, t->y.z, t->z.z);

  return make_float3(dot(x, a), dot(y, a), dot(z, a));
}

ccl_device_inline Transform make_transform(float a,
                                           float b,
                                           float c,
                                           float d,
                                           float e,
                                           float f,
                                           float g,
                                           float h,
                                           float i,
                                           float j,
                                           float k,
                                           float l)
{
  Transform t;

  t.x.x = a;
  t.x.y = b;
  t.x.z = c;
  t.x.w = d;
  t.y.x = e;
  t.y.y = f;
  t.y.z = g;
  t.y.w = h;
  t.z.x = i;
  t.z.y = j;
  t.z.z = k;
  t.z.w = l;

  return t;
}

ccl_device_inline Transform euler_to_transform(const float3 euler)
{
  float cx = cosf(euler.x);
  float cy = cosf(euler.y);
  float cz = cosf(euler.z);
  float sx = sinf(euler.x);
  float sy = sinf(euler.y);
  float sz = sinf(euler.z);

  Transform t;
  t.x.x = cy * cz;
  t.y.x = cy * sz;
  t.z.x = -sy;

  t.x.y = sy * sx * cz - cx * sz;
  t.y.y = sy * sx * sz + cx * cz;
  t.z.y = cy * sx;

  t.x.z = sy * cx * cz + sx * sz;
  t.y.z = sy * cx * sz - sx * cz;
  t.z.z = cy * cx;

  t.x.w = t.y.w = t.z.w = 0.0f;
  return t;
}

/* Constructs a coordinate frame from a normalized normal. */
ccl_device_inline Transform make_transform_frame(float3 N)
{
  const float3 dx0 = cross(make_float3(1.0f, 0.0f, 0.0f), N);
  const float3 dx1 = cross(make_float3(0.0f, 1.0f, 0.0f), N);
  const float3 dx = normalize((dot(dx0, dx0) > dot(dx1, dx1)) ? dx0 : dx1);
  const float3 dy = normalize(cross(N, dx));
  return make_transform(dx.x, dx.y, dx.z, 0.0f, dy.x, dy.y, dy.z, 0.0f, N.x, N.y, N.z, 0.0f);
}

#ifndef __KERNEL_GPU__

ccl_device_inline Transform transform_zero()
{
  Transform zero = {zero_float4(), zero_float4(), zero_float4()};
  return zero;
}

ccl_device_inline Transform operator*(const Transform a, const Transform b)
{
  float4 c_x = make_float4(b.x.x, b.y.x, b.z.x, 0.0f);
  float4 c_y = make_float4(b.x.y, b.y.y, b.z.y, 0.0f);
  float4 c_z = make_float4(b.x.z, b.y.z, b.z.z, 0.0f);
  float4 c_w = make_float4(b.x.w, b.y.w, b.z.w, 1.0f);

  Transform t;
  t.x = make_float4(dot(a.x, c_x), dot(a.x, c_y), dot(a.x, c_z), dot(a.x, c_w));
  t.y = make_float4(dot(a.y, c_x), dot(a.y, c_y), dot(a.y, c_z), dot(a.y, c_w));
  t.z = make_float4(dot(a.z, c_x), dot(a.z, c_y), dot(a.z, c_z), dot(a.z, c_w));

  return t;
}

ccl_device_inline void print_transform(const char *label, const Transform &t)
{
  print_float4(label, t.x);
  print_float4(label, t.y);
  print_float4(label, t.z);
  printf("\n");
}

ccl_device_inline Transform transform_translate(float3 t)
{
  return make_transform(1, 0, 0, t.x, 0, 1, 0, t.y, 0, 0, 1, t.z);
}

ccl_device_inline Transform transform_translate(float x, float y, float z)
{
  return transform_translate(make_float3(x, y, z));
}

ccl_device_inline Transform transform_scale(float3 s)
{
  return make_transform(s.x, 0, 0, 0, 0, s.y, 0, 0, 0, 0, s.z, 0);
}

ccl_device_inline Transform transform_scale(float x, float y, float z)
{
  return transform_scale(make_float3(x, y, z));
}

ccl_device_inline Transform transform_rotate(float angle, float3 axis)
{
  float s = sinf(angle);
  float c = cosf(angle);
  float t = 1.0f - c;

  axis = normalize(axis);

  return make_transform(axis.x * axis.x * t + c,
                        axis.x * axis.y * t - s * axis.z,
                        axis.x * axis.z * t + s * axis.y,
                        0.0f,

                        axis.y * axis.x * t + s * axis.z,
                        axis.y * axis.y * t + c,
                        axis.y * axis.z * t - s * axis.x,
                        0.0f,

                        axis.z * axis.x * t - s * axis.y,
                        axis.z * axis.y * t + s * axis.x,
                        axis.z * axis.z * t + c,
                        0.0f);
}

/* Euler is assumed to be in XYZ order. */
ccl_device_inline Transform transform_euler(float3 euler)
{
  return transform_rotate(euler.z, make_float3(0.0f, 0.0f, 1.0f)) *
         transform_rotate(euler.y, make_float3(0.0f, 1.0f, 0.0f)) *
         transform_rotate(euler.x, make_float3(1.0f, 0.0f, 0.0f));
}

ccl_device_inline Transform transform_identity()
{
  return transform_scale(1.0f, 1.0f, 1.0f);
}

ccl_device_inline bool operator==(const Transform &A, const Transform &B)
{
  return memcmp(&A, &B, sizeof(Transform)) == 0;
}

ccl_device_inline bool operator!=(const Transform &A, const Transform &B)
{
  return !(A == B);
}

ccl_device_inline bool transform_equal_threshold(const Transform &A,
                                                 const Transform &B,
                                                 const float threshold)
{
  for (int x = 0; x < 3; x++) {
    for (int y = 0; y < 4; y++) {
      if (fabsf(A[x][y] - B[x][y]) > threshold) {
        return false;
      }
    }
  }

  return true;
}

ccl_device_inline float3 transform_get_column(const Transform *t, int column)
{
  return make_float3(t->x[column], t->y[column], t->z[column]);
}

ccl_device_inline void transform_set_column(Transform *t, int column, float3 value)
{
  t->x[column] = value.x;
  t->y[column] = value.y;
  t->z[column] = value.z;
}

Transform transform_transposed_inverse(const Transform &a);

ccl_device_inline bool transform_uniform_scale(const Transform &tfm, float &scale)
{
  /* the epsilon here is quite arbitrary, but this function is only used for
   * surface area and bump, where we expect it to not be so sensitive */
  float eps = 1e-6f;

  float sx = len_squared(float4_to_float3(tfm.x));
  float sy = len_squared(float4_to_float3(tfm.y));
  float sz = len_squared(float4_to_float3(tfm.z));
  float stx = len_squared(transform_get_column(&tfm, 0));
  float sty = len_squared(transform_get_column(&tfm, 1));
  float stz = len_squared(transform_get_column(&tfm, 2));

  if (fabsf(sx - sy) < eps && fabsf(sx - sz) < eps && fabsf(sx - stx) < eps &&
      fabsf(sx - sty) < eps && fabsf(sx - stz) < eps) {
    scale = sx;
    return true;
  }

  return false;
}

ccl_device_inline bool transform_negative_scale(const Transform &tfm)
{
  float3 c0 = transform_get_column(&tfm, 0);
  float3 c1 = transform_get_column(&tfm, 1);
  float3 c2 = transform_get_column(&tfm, 2);

  return (dot(cross(c0, c1), c2) < 0.0f);
}

ccl_device_inline Transform transform_clear_scale(const Transform &tfm)
{
  Transform ntfm = tfm;

  transform_set_column(&ntfm, 0, normalize(transform_get_column(&ntfm, 0)));
  transform_set_column(&ntfm, 1, normalize(transform_get_column(&ntfm, 1)));
  transform_set_column(&ntfm, 2, normalize(transform_get_column(&ntfm, 2)));

  return ntfm;
}

ccl_device_inline Transform transform_empty()
{
  return make_transform(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}

#endif

/* Motion Transform */

ccl_device_inline float4 quat_interpolate(float4 q1, float4 q2, float t)
{
  /* Optix and MetalRT are using lerp to interpolate motion transformations. */
#if defined(__KERNEL_GPU_RAYTRACING__)
  return normalize((1.0f - t) * q1 + t * q2);
#else  /* defined(__KERNEL_GPU_RAYTRACING__) */
  /* NOTE: this does not ensure rotation around shortest angle, q1 and q2
   * are assumed to be matched already in transform_motion_decompose */
  float costheta = dot(q1, q2);

  /* possible optimization: it might be possible to precompute theta/qperp */

  if (costheta > 0.9995f) {
    /* linear interpolation in degenerate case */
    return normalize((1.0f - t) * q1 + t * q2);
  }
  else {
    /* slerp */
    float theta = acosf(clamp(costheta, -1.0f, 1.0f));
    float4 qperp = normalize(q2 - q1 * costheta);
    float thetap = theta * t;
    return q1 * cosf(thetap) + qperp * sinf(thetap);
  }
#endif /* defined(__KERNEL_GPU_RAYTRACING__) */
}

#ifndef __KERNEL_GPU__
void transform_inverse_cpu_sse41(const Transform &tfm, Transform &itfm);
void transform_inverse_cpu_avx2(const Transform &tfm, Transform &itfm);
#endif

ccl_device_inline Transform transform_inverse(const Transform tfm)
{
  /* Optimized transform implementations. */
#ifndef __KERNEL_GPU__
  if (system_cpu_support_avx2()) {
    Transform itfm;
    transform_inverse_cpu_avx2(tfm, itfm);
    return itfm;
  }
  else if (system_cpu_support_sse41()) {
    Transform itfm;
    transform_inverse_cpu_sse41(tfm, itfm);
    return itfm;
  }
#endif

  return transform_inverse_impl(tfm);
}

ccl_device_inline void transform_compose(ccl_private Transform *tfm,
                                         ccl_private const DecomposedTransform *decomp)
{
  /* rotation */
  float q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;

  q0 = M_SQRT2_F * decomp->x.w;
  q1 = M_SQRT2_F * decomp->x.x;
  q2 = M_SQRT2_F * decomp->x.y;
  q3 = M_SQRT2_F * decomp->x.z;

  qda = q0 * q1;
  qdb = q0 * q2;
  qdc = q0 * q3;
  qaa = q1 * q1;
  qab = q1 * q2;
  qac = q1 * q3;
  qbb = q2 * q2;
  qbc = q2 * q3;
  qcc = q3 * q3;

  float3 rotation_x = make_float3(1.0f - qbb - qcc, -qdc + qab, qdb + qac);
  float3 rotation_y = make_float3(qdc + qab, 1.0f - qaa - qcc, -qda + qbc);
  float3 rotation_z = make_float3(-qdb + qac, qda + qbc, 1.0f - qaa - qbb);

  /* scale */
  float3 scale_x = make_float3(decomp->y.w, decomp->z.z, decomp->w.y);
  float3 scale_y = make_float3(decomp->z.x, decomp->z.w, decomp->w.z);
  float3 scale_z = make_float3(decomp->z.y, decomp->w.x, decomp->w.w);

  /* compose with translation */
  tfm->x = make_float4(
      dot(rotation_x, scale_x), dot(rotation_x, scale_y), dot(rotation_x, scale_z), decomp->y.x);
  tfm->y = make_float4(
      dot(rotation_y, scale_x), dot(rotation_y, scale_y), dot(rotation_y, scale_z), decomp->y.y);
  tfm->z = make_float4(
      dot(rotation_z, scale_x), dot(rotation_z, scale_y), dot(rotation_z, scale_z), decomp->y.z);
}

/* Interpolate from array of decomposed transforms. */
ccl_device void transform_motion_array_interpolate(ccl_private Transform *tfm,
                                                   ccl_global const DecomposedTransform *motion,
                                                   uint numsteps,
                                                   float time)
{
  /* Figure out which steps we need to interpolate. */
  int maxstep = numsteps - 1;
  int step = min((int)(time * maxstep), maxstep - 1);
  float t = time * maxstep - step;

  ccl_global const DecomposedTransform *a = motion + step;
  ccl_global const DecomposedTransform *b = motion + step + 1;

  /* Interpolate rotation, translation and scale. */
  DecomposedTransform decomp;
  decomp.x = quat_interpolate(a->x, b->x, t);
  decomp.y = (1.0f - t) * a->y + t * b->y;
  decomp.z = (1.0f - t) * a->z + t * b->z;
  decomp.w = (1.0f - t) * a->w + t * b->w;

  /* Compose rotation, translation, scale into matrix. */
  transform_compose(tfm, &decomp);
}

ccl_device_inline bool transform_isfinite_safe(ccl_private Transform *tfm)
{
  return isfinite_safe(tfm->x) && isfinite_safe(tfm->y) && isfinite_safe(tfm->z);
}

ccl_device_inline bool transform_decomposed_isfinite_safe(ccl_private DecomposedTransform *decomp)
{
  return isfinite_safe(decomp->x) && isfinite_safe(decomp->y) && isfinite_safe(decomp->z) &&
         isfinite_safe(decomp->w);
}

#ifndef __KERNEL_GPU__

class BoundBox2D;

ccl_device_inline bool operator==(const DecomposedTransform &A, const DecomposedTransform &B)
{
  return memcmp(&A, &B, sizeof(DecomposedTransform)) == 0;
}

float4 transform_to_quat(const Transform &tfm);
void transform_motion_decompose(DecomposedTransform *decomp, const Transform *motion, size_t size);
Transform transform_from_viewplane(BoundBox2D &viewplane);

#endif

/* TODO: This can be removed when we know if no devices will require explicit
 * address space qualifiers for this case. */

#define transform_point_auto transform_point
#define transform_direction_auto transform_direction
#define transform_direction_transposed_auto transform_direction_transposed

CCL_NAMESPACE_END

#endif /* __UTIL_TRANSFORM_H__ */