Welcome to mirror list, hosted at ThFree Co, Russian Federation.

util_math_fast.h « util « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 323d40058e5997c6dc8b8c6d980e5977b5ff75ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
 * Adapted from OpenImageIO library with this license:
 *
 * Copyright 2008-2014 Larry Gritz and the other authors and contributors.
 * All Rights Reserved.

 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * * Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * * Neither the name of the software's owners nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * (This is the Modified BSD License)
 *
 * A few bits here are based upon code from NVIDIA that was also released
 * under the same modified BSD license, and marked as:
 *    Copyright 2004 NVIDIA Corporation. All Rights Reserved.
 *
 * Some parts of this file were first open-sourced in Open Shading Language,
 * then later moved here. The original copyright notice was:
 *    Copyright (c) 2009-2014 Sony Pictures Imageworks Inc., et al.
 *
 * Many of the math functions were copied from or inspired by other
 * public domain sources or open source packages with compatible licenses.
 * The individual functions give references were applicable.
 */

#ifndef __UTIL_FAST_MATH__
#define __UTIL_FAST_MATH__

CCL_NAMESPACE_BEGIN

ccl_device_inline float madd(const float a, const float b, const float c)
{
	/* NOTE: In the future we may want to explicitly ask for a fused
	 * multiply-add in a specialized version for float.
	 *
	 * NOTE: GCC/ICC will turn this (for float) into a FMA unless
	 * explicitly asked not to, clang seems to leave the code alone.
	 */
	return a * b + c;
}

ccl_device_inline float4 madd4(const float4 a, const float4 b, const float4 c)
{
	return a * b + c;
}

/*
 * FAST & APPROXIMATE MATH
 *
 * The functions named "fast_*" provide a set of replacements to libm that
 * are much faster at the expense of some accuracy and robust handling of
 * extreme values. One design goal for these approximation was to avoid
 * branches as much as possible and operate on single precision values only
 * so that SIMD versions should be straightforward ports We also try to
 * implement "safe" semantics (ie: clamp to valid range where possible)
 * natively since wrapping these inline calls in another layer would be
 * wasteful.
 *
 * Some functions are fast_safe_*, which is both a faster approximation as
 * well as clamped input domain to ensure no NaN, Inf, or divide by zero.
 */

/* Round to nearest integer, returning as an int. */
ccl_device_inline int fast_rint(float x)
{
	/* used by sin/cos/tan range reduction. */
#ifdef __KERNEL_SSE4__
	/* Single roundps instruction on SSE4.1+ (for gcc/clang at least). */
	return float_to_int(rintf(x));
#else
	/* emulate rounding by adding/substracting 0.5. */
	return float_to_int(x + copysignf(0.5f, x));
#endif
}

ccl_device float fast_sinf(float x)
{
	/* Very accurate argument reduction from SLEEF,
	 * starts failing around x=262000
	 *
	 * Results on: [-2pi,2pi].
	 *
	 * Examined 2173837240 values of sin: 0.00662760244 avg ulp diff, 2 max ulp,
	 * 1.19209e-07 max error
	 */
	int q = fast_rint(x * M_1_PI_F);
	float qf = q;
	x = madd(qf, -0.78515625f*4, x);
	x = madd(qf, -0.00024187564849853515625f*4, x);
	x = madd(qf, -3.7747668102383613586e-08f*4, x);
	x = madd(qf, -1.2816720341285448015e-12f*4, x);
	x = M_PI_2_F - (M_PI_2_F - x);  /* Crush denormals */
	float s = x * x;
	if((q & 1) != 0) x = -x;
	/* This polynomial approximation has very low error on [-pi/2,+pi/2]
	 * 1.19209e-07 max error in total over [-2pi,+2pi]. */
	float u = 2.6083159809786593541503e-06f;
	u = madd(u, s, -0.0001981069071916863322258f);
	u = madd(u, s, +0.00833307858556509017944336f);
	u = madd(u, s, -0.166666597127914428710938f);
	u = madd(s, u * x, x);
	/* For large x, the argument reduction can fail and the polynomial can be
	 * evaluated with arguments outside the valid internal. Just clamp the bad
	 * values away (setting to 0.0f means no branches need to be generated). */
	if(fabsf(u) > 1.0f) {
		u = 0.0f;
	}
	return u;
}

ccl_device float fast_cosf(float x)
{
	/* Same argument reduction as fast_sinf(). */
	int q = fast_rint(x * M_1_PI_F);
	float qf = q;
	x = madd(qf, -0.78515625f*4, x);
	x = madd(qf, -0.00024187564849853515625f*4, x);
	x = madd(qf, -3.7747668102383613586e-08f*4, x);
	x = madd(qf, -1.2816720341285448015e-12f*4, x);
	x = M_PI_2_F - (M_PI_2_F - x);  /* Crush denormals. */
	float s = x * x;
	/* Polynomial from SLEEF's sincosf, max error is
	 * 4.33127e-07 over [-2pi,2pi] (98% of values are "exact"). */
	float u = -2.71811842367242206819355e-07f;
	u = madd(u, s, +2.47990446951007470488548e-05f);
	u = madd(u, s, -0.00138888787478208541870117f);
	u = madd(u, s, +0.0416666641831398010253906f);
	u = madd(u, s, -0.5f);
	u = madd(u, s, +1.0f);
	if((q & 1) != 0) {
		u = -u;
	}
	if(fabsf(u) > 1.0f) {
		u = 0.0f;
	}
	return u;
}

ccl_device void fast_sincosf(float x, float* sine, float* cosine)
{
	/* Same argument reduction as fast_sin. */
	int q = fast_rint(x * M_1_PI_F);
	float qf = q;
	x = madd(qf, -0.78515625f*4, x);
	x = madd(qf, -0.00024187564849853515625f*4, x);
	x = madd(qf, -3.7747668102383613586e-08f*4, x);
	x = madd(qf, -1.2816720341285448015e-12f*4, x);
	x = M_PI_2_F - (M_PI_2_F - x); // crush denormals
	float s = x * x;
	/* NOTE: same exact polynomials as fast_sinf() and fast_cosf() above. */
	if((q & 1) != 0) {
		x = -x;
	}
	float su = 2.6083159809786593541503e-06f;
	su = madd(su, s, -0.0001981069071916863322258f);
	su = madd(su, s, +0.00833307858556509017944336f);
	su = madd(su, s, -0.166666597127914428710938f);
	su = madd(s, su * x, x);
	float cu = -2.71811842367242206819355e-07f;
	cu = madd(cu, s, +2.47990446951007470488548e-05f);
	cu = madd(cu, s, -0.00138888787478208541870117f);
	cu = madd(cu, s, +0.0416666641831398010253906f);
	cu = madd(cu, s, -0.5f);
	cu = madd(cu, s, +1.0f);
	if((q & 1) != 0) {
		cu = -cu;
	}
	if(fabsf(su) > 1.0f) {
		su = 0.0f;
	}
	if(fabsf(cu) > 1.0f) {
		cu = 0.0f;
	}
	*sine   = su;
	*cosine = cu;
}

/* NOTE: this approximation is only valid on [-8192.0,+8192.0], it starts
 * becoming really poor outside of this range because the reciprocal amplifies
 * errors.
 */
ccl_device float fast_tanf(float x)
{
	/* Derived from SLEEF implementation.
	 *
	 * Note that we cannot apply the "denormal crush" trick everywhere because
	 * we sometimes need to take the reciprocal of the polynomial
	 */
	int q = fast_rint(x * 2.0f * M_1_PI_F);
	float qf = q;
	x = madd(qf, -0.78515625f*2, x);
	x = madd(qf, -0.00024187564849853515625f*2, x);
	x = madd(qf, -3.7747668102383613586e-08f*2, x);
	x = madd(qf, -1.2816720341285448015e-12f*2, x);
	if((q & 1) == 0) {
		/* Crush denormals (only if we aren't inverting the result later). */
		x = M_PI_4_F - (M_PI_4_F - x);
	}
	float s = x * x;
	float u = 0.00927245803177356719970703f;
	u = madd(u, s, 0.00331984995864331722259521f);
	u = madd(u, s, 0.0242998078465461730957031f);
	u = madd(u, s, 0.0534495301544666290283203f);
	u = madd(u, s, 0.133383005857467651367188f);
	u = madd(u, s, 0.333331853151321411132812f);
	u = madd(s, u * x, x);
	if((q & 1) != 0) {
		u = -1.0f / u;
	}
	return u;
}

/* Fast, approximate sin(x*M_PI) with maximum absolute error of 0.000918954611.
 *
 * Adapted from http://devmaster.net/posts/9648/fast-and-accurate-sine-cosine#comment-76773
 */
ccl_device float fast_sinpif(float x)
{
	/* Fast trick to strip the integral part off, so our domain is [-1, 1]. */
	const float z = x - ((x + 25165824.0f) - 25165824.0f);
	const float y = z - z * fabsf(z);
	const float Q = 3.10396624f;
	const float P = 3.584135056f;  /* P = 16-4*Q */
	return y * (Q + P * fabsf(y));

	/* The original article used used inferior constants for Q and P and
	 * so had max error 1.091e-3.
	 *
	 * The optimal value for Q was determined by exhaustive search, minimizing
	 * the absolute numerical error relative to float(std::sin(double(phi*M_PI)))
	 * over the interval [0,2] (which is where most of the invocations happen).
	 *
	 * The basic idea of this approximation starts with the coarse approximation:
	 *      sin(pi*x) ~= f(x) =  4 * (x - x * abs(x))
	 *
	 * This approximation always _over_ estimates the target. On the other hand,
	 * the curve:
	 *      sin(pi*x) ~= f(x) * abs(f(x)) / 4
	 *
	 * always lies _under_ the target. Thus we can simply numerically search for
	 * the optimal constant to LERP these curves into a more precise
	 * approximation.
	 *
	 * After folding the constants together and simplifying the resulting math,
	 * we end up with the compact implementation above.
	 *
	 * NOTE: this function actually computes sin(x * pi) which avoids one or two
	 * mults in many cases and guarantees exact values at integer periods.
	 */
}

/* Fast approximate cos(x*M_PI) with ~0.1% absolute error. */
ccl_device_inline float fast_cospif(float x)
{
	return fast_sinpif(x+0.5f);
}

ccl_device float fast_acosf(float x)
{
	const float f = fabsf(x);
	/* clamp and crush denormals. */
	const float m = (f < 1.0f) ? 1.0f - (1.0f - f) : 1.0f;
	/* Based on http://www.pouet.net/topic.php?which=9132&page=2
	 * 85% accurate (ulp 0)
	 * Examined 2130706434 values of acos: 15.2000597 avg ulp diff, 4492 max ulp, 4.51803e-05 max error // without "denormal crush"
	 * Examined 2130706434 values of acos: 15.2007108 avg ulp diff, 4492 max ulp, 4.51803e-05 max error // with "denormal crush"
	 */
	const float a = sqrtf(1.0f - m) *
		(1.5707963267f + m * (-0.213300989f + m *
		                      (0.077980478f + m * -0.02164095f)));
	return x < 0 ? M_PI_F - a : a;
}

ccl_device float fast_asinf(float x)
{
	/* Based on acosf approximation above.
	 * Max error is 4.51133e-05 (ulps are higher because we are consistently off
	 * by a little amount).
	 */
	const float f = fabsf(x);
	/* Clamp and crush denormals. */
	const float m = (f < 1.0f) ? 1.0f - (1.0f - f) : 1.0f;
	const float a = M_PI_2_F - sqrtf(1.0f - m) *
		(1.5707963267f + m * (-0.213300989f + m *
		                      (0.077980478f + m * -0.02164095f)));
	return copysignf(a, x);
}

ccl_device float fast_atanf(float x)
{
	const float a = fabsf(x);
	const float k = a > 1.0f ? 1 / a : a;
	const float s = 1.0f - (1.0f - k);  /* Crush denormals. */
	const float t = s * s;
	/* http://mathforum.org/library/drmath/view/62672.html
	 * Examined 4278190080 values of atan: 2.36864877 avg ulp diff, 302 max ulp, 6.55651e-06 max error      // (with  denormals)
	 * Examined 4278190080 values of atan: 171160502 avg ulp diff, 855638016 max ulp, 6.55651e-06 max error // (crush denormals)
	 */
	float r = s * madd(0.43157974f, t, 1.0f) /
	              madd(madd(0.05831938f, t, 0.76443945f), t, 1.0f);
	if(a > 1.0f) {
		r = M_PI_2_F - r;
	}
	return copysignf(r, x);
}

ccl_device float fast_atan2f(float y, float x)
{
	/* Based on atan approximation above.
	 *
	 * The special cases around 0 and infinity were tested explicitly.
	 *
	 * The only case not handled correctly is x=NaN,y=0 which returns 0 instead
	 * of nan.
	 */
	const float a = fabsf(x);
	const float b = fabsf(y);

	const float k = (b == 0) ? 0.0f : ((a == b) ? 1.0f : (b > a ? a / b : b / a));
	const float s = 1.0f - (1.0f - k);  /* Crush denormals */
	const float t = s * s;

	float r = s * madd(0.43157974f, t, 1.0f) /
	              madd(madd(0.05831938f, t, 0.76443945f), t, 1.0f);

	if(b > a) {
		/* Account for arg reduction. */
		r = M_PI_2_F - r;
	}
	/* Test sign bit of x. */
	if(__float_as_uint(x) & 0x80000000u) {
		r = M_PI_F - r;
	}
	return copysignf(r, y);
}

/* Based on:
 *
 *   https://github.com/LiraNuna/glsl-sse2/blob/master/source/vec4.h
 *
 */
ccl_device float fast_log2f(float x)
{
	/* NOTE: clamp to avoid special cases and make result "safe" from large
	 * negative values/nans. */
	x = clamp(x, FLT_MIN, FLT_MAX);
	unsigned bits = __float_as_uint(x);
	int exponent = (int)(bits >> 23) - 127;
	float f = __uint_as_float((bits & 0x007FFFFF) | 0x3f800000) - 1.0f;
	/* Examined 2130706432 values of log2 on [1.17549435e-38,3.40282347e+38]:
	 * 0.0797524457 avg ulp diff, 3713596 max ulp, 7.62939e-06 max error.
	 * ulp histogram:
	 *  0  = 97.46%
	 *  1  =  2.29%
	 *  2  =  0.11%
	 */
	float f2 = f * f;
	float f4 = f2 * f2;
	float hi = madd(f, -0.00931049621349f,  0.05206469089414f);
	float lo = madd(f,  0.47868480909345f, -0.72116591947498f);
	hi = madd(f, hi, -0.13753123777116f);
	hi = madd(f, hi,  0.24187369696082f);
	hi = madd(f, hi, -0.34730547155299f);
	lo = madd(f, lo,  1.442689881667200f);
	return ((f4 * hi) + (f * lo)) + exponent;
}

ccl_device_inline float fast_logf(float x)
{
	/* Examined 2130706432 values of logf on [1.17549435e-38,3.40282347e+38]:
	 * 0.313865375 avg ulp diff, 5148137 max ulp, 7.62939e-06 max error.
	 */
	return fast_log2f(x) * M_LN2_F;
}

ccl_device_inline float fast_log10(float x)
{
	/* Examined 2130706432 values of log10f on [1.17549435e-38,3.40282347e+38]:
	 * 0.631237033 avg ulp diff, 4471615 max ulp, 3.8147e-06 max error.
	 */
	return fast_log2f(x) * M_LN2_F / M_LN10_F;
}

ccl_device float fast_logb(float x)
{
	/* Don't bother with denormals. */
	x = fabsf(x);
	x = clamp(x, FLT_MIN, FLT_MAX);
	unsigned bits = __float_as_uint(x);
	return (int)(bits >> 23) - 127;
}

ccl_device float fast_exp2f(float x)
{
	/* Clamp to safe range for final addition. */
	x = clamp(x, -126.0f, 126.0f);
	/* Range reduction. */
	int m = (int)x; x -= m;
	x = 1.0f - (1.0f - x); /* Crush denormals (does not affect max ulps!). */
	/* 5th degree polynomial generated with sollya
	 * Examined 2247622658 values of exp2 on [-126,126]: 2.75764912 avg ulp diff,
	 * 232 max ulp.
	 *
	 * ulp histogram:
	 *  0  = 87.81%
	 *  1  =  4.18%
	 */
	float r = 1.33336498402e-3f;
	r = madd(x, r, 9.810352697968e-3f);
	r = madd(x, r, 5.551834031939e-2f);
	r = madd(x, r, 0.2401793301105f);
	r = madd(x, r, 0.693144857883f);
	r = madd(x, r, 1.0f);
	/* Multiply by 2 ^ m by adding in the exponent. */
	/* NOTE: left-shift of negative number is undefined behavior. */
	return __uint_as_float(__float_as_uint(r) + ((unsigned)m << 23));
}

ccl_device_inline float fast_expf(float x)
{
	/* Examined 2237485550 values of exp on [-87.3300018,87.3300018]:
	 * 2.6666452 avg ulp diff, 230 max ulp.
	 */
	return fast_exp2f(x / M_LN2_F);
}

#ifndef __KERNEL_GPU__
ccl_device float4 fast_exp2f4(float4 x)
{
	const float4 one = make_float4(1.0f);
	const float4 limit = make_float4(126.0f);
	x = clamp(x, -limit, limit);
	int4 m = make_int4(x);
	x = one - (one - (x - make_float4(m)));
	float4 r = make_float4(1.33336498402e-3f);
	r = madd4(x, r, make_float4(9.810352697968e-3f));
	r = madd4(x, r, make_float4(5.551834031939e-2f));
	r = madd4(x, r, make_float4(0.2401793301105f));
	r = madd4(x, r, make_float4(0.693144857883f));
	r = madd4(x, r, make_float4(1.0f));
	return __int4_as_float4(__float4_as_int4(r) + (m << 23));
}

ccl_device_inline float4 fast_expf4(float4 x)
{
	return fast_exp2f4(x / M_LN2_F);
}
#endif

ccl_device_inline float fast_exp10(float x)
{
	/* Examined 2217701018 values of exp10 on [-37.9290009,37.9290009]:
	 * 2.71732409 avg ulp diff, 232 max ulp.
	 */
	return fast_exp2f(x * M_LN10_F / M_LN2_F);
}

ccl_device_inline float fast_expm1f(float x)
{
	if(fabsf(x) < 1e-5f) {
		x = 1.0f - (1.0f - x);  /* Crush denormals. */
		return madd(0.5f, x * x, x);
	}
	else {
		return fast_expf(x) - 1.0f;
	}
}

ccl_device float fast_sinhf(float x)
{
	float a = fabsf(x);
	if(a > 1.0f) {
		/* Examined 53389559 values of sinh on [1,87.3300018]:
		 * 33.6886442 avg ulp diff, 178 max ulp. */
		float e = fast_expf(a);
		return copysignf(0.5f * e - 0.5f / e, x);
	}
	else {
		a = 1.0f - (1.0f - a);  /* Crush denorms. */
		float a2 = a * a;
		/* Degree 7 polynomial generated with sollya. */
		/* Examined 2130706434 values of sinh on [-1,1]: 1.19209e-07 max error. */
		float r = 2.03945513931e-4f;
		r = madd(r, a2, 8.32990277558e-3f);
		r = madd(r, a2, 0.1666673421859f);
		r = madd(r * a, a2, a);
		return copysignf(r, x);
	}
}

ccl_device_inline float fast_coshf(float x)
{
	/* Examined 2237485550 values of cosh on [-87.3300018,87.3300018]:
	 * 1.78256726 avg ulp diff, 178 max ulp.
	 */
	float e = fast_expf(fabsf(x));
	return 0.5f * e + 0.5f / e;
}

ccl_device_inline float fast_tanhf(float x)
{
	/* Examined 4278190080 values of tanh on [-3.40282347e+38,3.40282347e+38]:
	 * 3.12924e-06 max error.
	 */
	/* NOTE: ulp error is high because of sub-optimal handling around the origin. */
	float e = fast_expf(2.0f * fabsf(x));
	return copysignf(1.0f - 2.0f / (1.0f + e), x);
}

ccl_device float fast_safe_powf(float x, float y)
{
	if(y == 0) return 1.0f;  /* x^1=1 */
	if(x == 0) return 0.0f;  /* 0^y=0 */
	float sign = 1.0f;
	if(x < 0.0f) {
		/* if x is negative, only deal with integer powers
		 * powf returns NaN for non-integers, we will return 0 instead.
		 */
		int ybits = __float_as_int(y) & 0x7fffffff;
		if(ybits >= 0x4b800000) {
			// always even int, keep positive
		}
		else if(ybits >= 0x3f800000) {
			/* Bigger than 1, check. */
			int k = (ybits >> 23) - 127;  /* Get exponent. */
			int j =  ybits >> (23 - k);   /* Shift out possible fractional bits. */
			if((j << (23 - k)) == ybits) {  /* rebuild number and check for a match. */
				/* +1 for even, -1 for odd. */
				sign = __int_as_float(0x3f800000 | (j << 31));
			}
			else {
				/* Not an integer. */
				return 0.0f;
			}
		}
		else {
			/* Not an integer. */
			return 0.0f;
		}
	}
	return sign * fast_exp2f(y * fast_log2f(fabsf(x)));
}

/* TODO(sergey): Check speed  with our erf functions implementation from
 * bsdf_microfacet.h.
 */

ccl_device_inline float fast_erff(float x)
{
	/* Examined 1082130433 values of erff on [0,4]: 1.93715e-06 max error. */
	/* Abramowitz and Stegun, 7.1.28. */
	const float a1 = 0.0705230784f;
	const float a2 = 0.0422820123f;
	const float a3 = 0.0092705272f;
	const float a4 = 0.0001520143f;
	const float a5 = 0.0002765672f;
	const float a6 = 0.0000430638f;
	const float a = fabsf(x);
	if(a >= 12.3f) {
		return copysignf(1.0f, x);
	}
	const float b = 1.0f - (1.0f - a);  /* Crush denormals. */
	const float r = madd(madd(madd(madd(madd(madd(a6, b, a5), b, a4), b, a3), b, a2), b, a1), b, 1.0f);
	const float s = r * r;  /* ^2 */
	const float t = s * s;  /* ^4 */
	const float u = t * t;  /* ^8 */
	const float v = u * u;  /* ^16 */
	return copysignf(1.0f - 1.0f / v, x);
}

ccl_device_inline float fast_erfcf(float x)
{
	/* Examined 2164260866 values of erfcf on [-4,4]: 1.90735e-06 max error.
	 *
	 * ulp histogram:
	 *
	 *  0  = 80.30%
	 */
	return 1.0f - fast_erff(x);
}

ccl_device_inline float fast_ierff(float x)
{
	/* From: Approximating the erfinv function by Mike Giles. */
	/* To avoid trouble at the limit, clamp input to 1-eps. */
	float a = fabsf(x);
	if(a > 0.99999994f) {
		a = 0.99999994f;
	}
	float w = -fast_logf((1.0f - a) * (1.0f + a)), p;
	if(w < 5.0f) {
		w = w - 2.5f;
		p =  2.81022636e-08f;
		p = madd(p, w,  3.43273939e-07f);
		p = madd(p, w, -3.5233877e-06f);
		p = madd(p, w, -4.39150654e-06f);
		p = madd(p, w,  0.00021858087f);
		p = madd(p, w, -0.00125372503f);
		p = madd(p, w, -0.00417768164f);
		p = madd(p, w,  0.246640727f);
		p = madd(p, w,  1.50140941f);
	}
	else {
		w = sqrtf(w) - 3.0f;
		p = -0.000200214257f;
		p = madd(p, w,  0.000100950558f);
		p = madd(p, w,  0.00134934322f);
		p = madd(p, w, -0.00367342844f);
		p = madd(p, w,  0.00573950773f);
		p = madd(p, w, -0.0076224613f);
		p = madd(p, w,  0.00943887047f);
		p = madd(p, w,  1.00167406f);
		p = madd(p, w,  2.83297682f);
	}
	return p * x;
}

CCL_NAMESPACE_END

#endif  /* __UTIL_FAST_MATH__ */