Welcome to mirror list, hosted at ThFree Co, Russian Federation.

util_math_intersect.h « util « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4a052b8b9c645985e95b707133fbca258127fc0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
 * Copyright 2011-2017 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __UTIL_MATH_INTERSECT_H__
#define __UTIL_MATH_INTERSECT_H__

CCL_NAMESPACE_BEGIN

/* Ray Intersection */

ccl_device bool ray_sphere_intersect(
        float3 ray_P, float3 ray_D, float ray_t,
        float3 sphere_P, float sphere_radius,
        float3 *isect_P, float *isect_t)
{
	const float3 d = sphere_P - ray_P;
	const float radiussq = sphere_radius*sphere_radius;
	const float tsq = dot(d, d);

	if(tsq > radiussq) {
		/* Ray origin outside sphere. */
		const float tp = dot(d, ray_D);
		if(tp < 0.0f) {
			/* Ray  points away from sphere. */
			return false;
		}
		const float dsq = tsq - tp*tp;  /* pythagoras */
		if(dsq > radiussq)  {
			/* Closest point on ray outside sphere. */
			return false;
		}
		const float t = tp - sqrtf(radiussq - dsq);  /* pythagoras */
		if(t < ray_t) {
			*isect_t = t;
			*isect_P = ray_P + ray_D*t;
			return true;
		}
	}
	return false;
}

ccl_device bool ray_aligned_disk_intersect(
        float3 ray_P, float3 ray_D, float ray_t,
        float3 disk_P, float disk_radius,
        float3 *isect_P, float *isect_t)
{
	/* Aligned disk normal. */
	float disk_t;
	const float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
	const float div = dot(ray_D, disk_N);
	if(UNLIKELY(div == 0.0f)) {
		return false;
	}
	/* Compute t to intersection point. */
	const float t = -disk_t/div;
	if(t < 0.0f || t > ray_t) {
		return false;
	}
	/* Test if within radius. */
	float3 P = ray_P + ray_D*t;
	if(len_squared(P - disk_P) > disk_radius*disk_radius) {
		return false;
	}
	*isect_P = P;
	*isect_t = t;
	return true;
}

/* Optimized watertight ray-triangle intersection.
 *
 * Sven Woop
 * Watertight Ray/Triangle Intersection
 *
 * http://jcgt.org/published/0002/01/05/paper.pdf
 */

/* Precalculated data for the ray->tri intersection. */
typedef struct TriangleIsectPrecalc {
	/* Maximal dimension kz, and orthogonal dimensions. */
	int kx, ky, kz;

	/* Shear constants. */
	float Sx, Sy, Sz;
} TriangleIsectPrecalc;

/* Workaround stupidness of CUDA/OpenCL which doesn't allow to access indexed
 * component of float3 value.
 */
#ifdef __KERNEL_GPU__
#  define IDX(vec, idx) \
    ((idx == 0) ? ((vec).x) : ( (idx == 1) ? ((vec).y) : ((vec).z) ))
#else
#  define IDX(vec, idx) ((vec)[idx])
#endif

#if (defined(__KERNEL_OPENCL_APPLE__)) || \
    (defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86)))
ccl_device_noinline
#else
ccl_device_inline
#endif
void ray_triangle_intersect_precalc(float3 dir,
                                    TriangleIsectPrecalc *isect_precalc)
{
	/* Calculate dimension where the ray direction is maximal. */
#ifndef __KERNEL_SSE__
	int kz = util_max_axis(make_float3(fabsf(dir.x),
	                                   fabsf(dir.y),
	                                   fabsf(dir.z)));
	int kx = kz + 1; if(kx == 3) kx = 0;
	int ky = kx + 1; if(ky == 3) ky = 0;
#else
	int kx, ky, kz;
	/* Avoiding mispredicted branch on direction. */
	kz = util_max_axis(fabs(dir));
	static const char inc_xaxis[] = {1, 2, 0, 55};
	static const char inc_yaxis[] = {2, 0, 1, 55};
	kx = inc_xaxis[kz];
	ky = inc_yaxis[kz];
#endif

	float dir_kz = IDX(dir, kz);

	/* Swap kx and ky dimensions to preserve winding direction of triangles. */
	if(dir_kz < 0.0f) {
		int tmp = kx;
		kx = ky;
		ky = tmp;
	}

	/* Calculate the shear constants. */
	float inv_dir_z = 1.0f / dir_kz;
	isect_precalc->Sx = IDX(dir, kx) * inv_dir_z;
	isect_precalc->Sy = IDX(dir, ky) * inv_dir_z;
	isect_precalc->Sz = inv_dir_z;

	/* Store the dimensions. */
	isect_precalc->kx = kx;
	isect_precalc->ky = ky;
	isect_precalc->kz = kz;
}

ccl_device_inline bool ray_triangle_intersect(
        const TriangleIsectPrecalc *isect_precalc,
        float3 ray_P, float ray_t,
#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
        const ssef *ssef_verts,
#else
        const float3 *verts,
#endif
        float *isect_u, float *isect_v, float *isect_t)
{
	const int kx = isect_precalc->kx;
	const int ky = isect_precalc->ky;
	const int kz = isect_precalc->kz;
	const float Sx = isect_precalc->Sx;
	const float Sy = isect_precalc->Sy;
	const float Sz = isect_precalc->Sz;

#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
	const avxf avxf_P(ray_P.m128, ray_P.m128);
	const avxf tri_ab(_mm256_loadu_ps((float *)(ssef_verts)));
	const avxf tri_bc(_mm256_loadu_ps((float *)(ssef_verts + 1)));

	const avxf AB = tri_ab - avxf_P;
	const avxf BC = tri_bc - avxf_P;

	const __m256i permute_mask = _mm256_set_epi32(0x3, kz, ky, kx, 0x3, kz, ky, kx);

	const avxf AB_k = shuffle(AB, permute_mask);
	const avxf BC_k = shuffle(BC, permute_mask);

	/* Akz, Akz, Bkz, Bkz, Bkz, Bkz, Ckz, Ckz */
	const avxf ABBC_kz = shuffle<2>(AB_k, BC_k);

	/* Akx, Aky, Bkx, Bky, Bkx,Bky, Ckx, Cky */
	const avxf ABBC_kxy = shuffle<0,1,0,1>(AB_k, BC_k);

	const avxf Sxy(Sy, Sx, Sy, Sx);

	/* Ax, Ay, Bx, By, Bx, By, Cx, Cy */
	const avxf ABBC_xy = nmadd(ABBC_kz, Sxy, ABBC_kxy);

	float ABBC_kz_array[8];
	_mm256_storeu_ps((float*)&ABBC_kz_array, ABBC_kz);

	const float A_kz = ABBC_kz_array[0];
	const float B_kz = ABBC_kz_array[2];
	const float C_kz = ABBC_kz_array[6];

	/* By, Bx, Cy, Cx, By, Bx, Ay, Ax */
	const avxf BCBA_yx = permute<3,2,7,6,3,2,1,0>(ABBC_xy);

	const avxf neg_mask(0,0,0,0,0x80000000, 0x80000000, 0x80000000, 0x80000000);

	/* W           U                             V
	 * (AxBy-AyBx) (BxCy-ByCx) XX XX (BxBy-ByBx) (CxAy-CyAx) XX XX
	 */
	const avxf WUxxxxVxx_neg = _mm256_hsub_ps(ABBC_xy * BCBA_yx, neg_mask /* Dont care */);

	const avxf WUVWnegWUVW = permute<0,1,5,0,0,1,5,0>(WUxxxxVxx_neg) ^ neg_mask;

	/* Calculate scaled barycentric coordinates. */
	float WUVW_array[4];
	_mm_storeu_ps((float*)&WUVW_array, _mm256_castps256_ps128 (WUVWnegWUVW));

	const float W = WUVW_array[0];
	const float U = WUVW_array[1];
	const float V = WUVW_array[2];

	const int WUVW_mask = 0x7 & _mm256_movemask_ps(WUVWnegWUVW);
	const int WUVW_zero = 0x7 & _mm256_movemask_ps(_mm256_cmp_ps(WUVWnegWUVW,
	                                               _mm256_setzero_ps(), 0));

	if(!((WUVW_mask == 7) || (WUVW_mask == 0)) && ((WUVW_mask | WUVW_zero) != 7)) {
		return false;
	}
#else
	/* Calculate vertices relative to ray origin. */
	const float3 A = verts[0] - ray_P;
	const float3 B = verts[1] - ray_P;
	const float3 C = verts[2] - ray_P;

	const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz);
	const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz);
	const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz);

	/* Perform shear and scale of vertices. */
	const float Ax = A_kx - Sx * A_kz;
	const float Ay = A_ky - Sy * A_kz;
	const float Bx = B_kx - Sx * B_kz;
	const float By = B_ky - Sy * B_kz;
	const float Cx = C_kx - Sx * C_kz;
	const float Cy = C_ky - Sy * C_kz;

	/* Calculate scaled barycentric coordinates. */
	float U = Cx * By - Cy * Bx;
	float V = Ax * Cy - Ay * Cx;
	float W = Bx * Ay - By * Ax;
	if((U < 0.0f || V < 0.0f || W < 0.0f) &&
	   (U > 0.0f || V > 0.0f || W > 0.0f))
	{
		return false;
	}
#endif

	/* Calculate determinant. */
	float det = U + V + W;
	if(UNLIKELY(det == 0.0f)) {
		return false;
	}

	/* Calculate scaled z-coordinates of vertices and use them to calculate
	 * the hit distance.
	 */
	const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz;
	const int sign_det = (__float_as_int(det) & 0x80000000);
	const float sign_T = xor_signmask(T, sign_det);
	if((sign_T < 0.0f) ||
	   (sign_T > ray_t * xor_signmask(det, sign_det)))
	{
		return false;
	}

	/* Workaround precision error on CUDA. */
#ifdef __KERNEL_CUDA__
	if(A == B && B == C) {
		return false;
	}
#endif
	const float inv_det = 1.0f / det;
	*isect_u = U * inv_det;
	*isect_v = V * inv_det;
	*isect_t = T * inv_det;
	return true;
}

#undef IDX

ccl_device_inline bool ray_triangle_intersect_uv(
        float3 ray_P, float3 ray_D, float ray_t,
        float3 v0, float3 v1, float3 v2,
        float *isect_u, float *isect_v, float *isect_t)
{
	/* Calculate intersection. */
	const float3 e1 = v1 - v0;
	const float3 e2 = v2 - v0;
	const float3 s1 = cross(ray_D, e2);

	const float divisor = dot(s1, e1);
	if(UNLIKELY(divisor == 0.0f)) {
		return false;
	}
	const float inv_divisor = 1.0f/divisor;

	/* Compute first barycentric coordinate. */
	const float3 d = ray_P - v0;
	const float u = dot(d, s1)*inv_divisor;
	if(u < 0.0f) {
		return false;
	}
	/* Compute second barycentric coordinate. */
	const float3 s2 = cross(d, e1);
	const float v = dot(ray_D, s2)*inv_divisor;
	if(v < 0.0f) {
		return false;
	}
	const float b0 = 1.0f - u - v;
	if(b0 < 0.0f) {
		return false;
	}
	/* Compute distance to intersection point. */
	const float t = dot(e2, s2)*inv_divisor;
	if(t < 0.0f || t > ray_t) {
		return false;
	}
	*isect_u = u;
	*isect_v = v;
	*isect_t = t;
	return true;
}

ccl_device bool ray_quad_intersect(float3 ray_P, float3 ray_D,
                                   float ray_mint, float ray_maxt,
                                   float3 quad_P,
                                   float3 quad_u, float3 quad_v, float3 quad_n,
                                   float3 *isect_P, float *isect_t,
                                   float *isect_u, float *isect_v)
{
	/* Perform intersection test. */
	float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
	if(t < ray_mint || t > ray_maxt) {
		return false;
	}
	const float3 hit = ray_P + t*ray_D;
	const float3 inplane = hit - quad_P;
	const float u = dot(inplane, quad_u) / dot(quad_u, quad_u) + 0.5f;
	if(u < 0.0f || u > 1.0f) {
		return false;
	}
	const float v = dot(inplane, quad_v) / dot(quad_v, quad_v) + 0.5f;
	if(v < 0.0f || v > 1.0f) {
		return false;
	}
	/* Store the result. */
	/* TODO(sergey): Check whether we can avoid some checks here. */
	if(isect_P != NULL) *isect_P = hit;
	if(isect_t != NULL) *isect_t = t;
	if(isect_u != NULL) *isect_u = u;
	if(isect_v != NULL) *isect_v = v;
	return true;
}

CCL_NAMESPACE_END

#endif /* __UTIL_MATH_INTERSECT_H__ */