Welcome to mirror list, hosted at ThFree Co, Russian Federation.

util_task.cpp « util « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 61aa28c681585b3bd919bb27b401f89627e87318 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "util/util_task.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_system.h"
#include "util/util_time.h"

//#define THREADING_DEBUG_ENABLED

#ifdef THREADING_DEBUG_ENABLED
#  include <stdio.h>
#  define THREADING_DEBUG(...) \
    do { \
      printf(__VA_ARGS__); \
      fflush(stdout); \
    } while (0)
#else
#  define THREADING_DEBUG(...)
#endif

CCL_NAMESPACE_BEGIN

/* Task Pool */

TaskPool::TaskPool()
{
  num_tasks_handled = 0;
  num = 0;
  do_cancel = false;
}

TaskPool::~TaskPool()
{
  stop();
}

void TaskPool::push(Task *task, bool front)
{
  TaskScheduler::Entry entry;

  entry.task = task;
  entry.pool = this;

  TaskScheduler::push(entry, front);
}

void TaskPool::push(const TaskRunFunction &run, bool front)
{
  push(new Task(run), front);
}

void TaskPool::wait_work(Summary *stats)
{
  thread_scoped_lock num_lock(num_mutex);

  while (num != 0) {
    num_lock.unlock();

    thread_scoped_lock queue_lock(TaskScheduler::queue_mutex);

    /* find task from this pool. if we get a task from another pool,
     * we can get into deadlock */
    TaskScheduler::Entry work_entry;
    bool found_entry = false;
    list<TaskScheduler::Entry>::iterator it;

    for (it = TaskScheduler::queue.begin(); it != TaskScheduler::queue.end(); it++) {
      TaskScheduler::Entry &entry = *it;

      if (entry.pool == this) {
        work_entry = entry;
        found_entry = true;
        TaskScheduler::queue.erase(it);
        break;
      }
    }

    queue_lock.unlock();

    /* if found task, do it, otherwise wait until other tasks are done */
    if (found_entry) {
      /* run task */
      work_entry.task->run(0);

      /* delete task */
      delete work_entry.task;

      /* notify pool task was done */
      num_decrease(1);
    }

    num_lock.lock();
    if (num == 0)
      break;

    if (!found_entry) {
      THREADING_DEBUG("num==%d, Waiting for condition in TaskPool::wait_work !found_entry\n", num);
      num_cond.wait(num_lock);
      THREADING_DEBUG("num==%d, condition wait done in TaskPool::wait_work !found_entry\n", num);
    }
  }

  if (stats != NULL) {
    stats->time_total = time_dt() - start_time;
    stats->num_tasks_handled = num_tasks_handled;
  }
}

void TaskPool::cancel()
{
  do_cancel = true;

  TaskScheduler::clear(this);

  {
    thread_scoped_lock num_lock(num_mutex);

    while (num) {
      THREADING_DEBUG("num==%d, Waiting for condition in TaskPool::cancel\n", num);
      num_cond.wait(num_lock);
      THREADING_DEBUG("num==%d condition wait done in TaskPool::cancel\n", num);
    }
  }

  do_cancel = false;
}

void TaskPool::stop()
{
  TaskScheduler::clear(this);

  assert(num == 0);
}

bool TaskPool::canceled()
{
  return do_cancel;
}

bool TaskPool::finished()
{
  thread_scoped_lock num_lock(num_mutex);
  return num == 0;
}

void TaskPool::num_decrease(int done)
{
  num_mutex.lock();
  num -= done;

  assert(num >= 0);
  if (num == 0) {
    THREADING_DEBUG("num==%d, notifying all in TaskPool::num_decrease\n", num);
    num_cond.notify_all();
  }

  num_mutex.unlock();
}

void TaskPool::num_increase()
{
  thread_scoped_lock num_lock(num_mutex);
  if (num_tasks_handled == 0) {
    start_time = time_dt();
  }
  num++;
  num_tasks_handled++;
  THREADING_DEBUG("num==%d, notifying all in TaskPool::num_increase\n", num);
  num_cond.notify_all();
}

/* Task Scheduler */

thread_mutex TaskScheduler::mutex;
int TaskScheduler::users = 0;
vector<thread *> TaskScheduler::threads;
bool TaskScheduler::do_exit = false;

list<TaskScheduler::Entry> TaskScheduler::queue;
thread_mutex TaskScheduler::queue_mutex;
thread_condition_variable TaskScheduler::queue_cond;

namespace {

/* Get number of processors on each of the available nodes. The result is sized
 * by the highest node index, and element corresponds to number of processors on
 * that node.
 * If node is not available, then the corresponding number of processors is
 * zero. */
void get_per_node_num_processors(vector<int> *num_per_node_processors)
{
  const int num_nodes = system_cpu_num_numa_nodes();
  if (num_nodes == 0) {
    LOG(ERROR) << "Zero available NUMA nodes, is not supposed to happen.";
    return;
  }
  num_per_node_processors->resize(num_nodes);
  for (int node = 0; node < num_nodes; ++node) {
    if (!system_cpu_is_numa_node_available(node)) {
      (*num_per_node_processors)[node] = 0;
      continue;
    }
    (*num_per_node_processors)[node] = system_cpu_num_numa_node_processors(node);
  }
}

/* Calculate total number of processors on all available nodes.
 * This is similar to system_cpu_thread_count(), but uses pre-calculated number
 * of processors on each of the node, avoiding extra system calls and checks for
 * the node availability. */
int get_num_total_processors(const vector<int> &num_per_node_processors)
{
  int num_total_processors = 0;
  foreach (int num_node_processors, num_per_node_processors) {
    num_total_processors += num_node_processors;
  }
  return num_total_processors;
}

/* Compute NUMA node for every thread to run on, for the best performance. */
vector<int> distribute_threads_on_nodes(const int num_threads)
{
  /* Start with all threads unassigned to any specific NUMA node. */
  vector<int> thread_nodes(num_threads, -1);
  const int num_active_group_processors = system_cpu_num_active_group_processors();
  VLOG(1) << "Detected " << num_active_group_processors << " processors "
          << "in active group.";
  if (num_active_group_processors >= num_threads) {
    /* If the current thread is set up in a way that its affinity allows to
     * use at least requested number of threads we do not explicitly set
     * affinity to the worker threads.
     * This way we allow users to manually edit affinity of the parent
     * thread, and here we follow that affinity. This way it's possible to
     * have two Cycles/Blender instances running manually set to a different
     * dies on a CPU. */
    VLOG(1) << "Not setting thread group affinity.";
    return thread_nodes;
  }
  vector<int> num_per_node_processors;
  get_per_node_num_processors(&num_per_node_processors);
  if (num_per_node_processors.size() == 0) {
    /* Error was already reported, here we can't do anything, so we simply
     * leave default affinity to all the worker threads. */
    return thread_nodes;
  }
  const int num_nodes = num_per_node_processors.size();
  int thread_index = 0;
  /* First pass: fill in all the nodes to their maximum.
   *
   * If there is less threads than the overall nodes capacity, some of the
   * nodes or parts of them will idle.
   *
   * TODO(sergey): Consider picking up fastest nodes if number of threads
   * fits on them. For example, on Threadripper2 we might consider using nodes
   * 0 and 2 if user requested 32 render threads. */
  const int num_total_node_processors = get_num_total_processors(num_per_node_processors);
  int current_node_index = 0;
  while (thread_index < num_total_node_processors && thread_index < num_threads) {
    const int num_node_processors = num_per_node_processors[current_node_index];
    for (int processor_index = 0; processor_index < num_node_processors; ++processor_index) {
      VLOG(1) << "Scheduling thread " << thread_index << " to node " << current_node_index << ".";
      thread_nodes[thread_index] = current_node_index;
      ++thread_index;
      if (thread_index == num_threads) {
        /* All threads are scheduled on their nodes. */
        return thread_nodes;
      }
    }
    ++current_node_index;
  }
  /* Second pass: keep scheduling threads to each node one by one,
   * uniformly filling them in.
   * This is where things becomes tricky to predict for the maximum
   * performance: on the one hand this avoids too much threading overhead on
   * few nodes, but for the final performance having all the overhead on one
   * node might be better idea (since other nodes will have better chance of
   * rendering faster).
   * But more tricky is that nodes might have difference capacity, so we might
   * want to do some weighted scheduling. For example, if node 0 has 16
   * processors and node 1 has 32 processors, we'd better schedule 1 extra
   * thread on node 0 and 2 extra threads on node 1. */
  current_node_index = 0;
  while (thread_index < num_threads) {
    /* Skip unavailable nodes. */
    /* TODO(sergey): Add sanity check against deadlock. */
    while (num_per_node_processors[current_node_index] == 0) {
      current_node_index = (current_node_index + 1) % num_nodes;
    }
    VLOG(1) << "Scheduling thread " << thread_index << " to node " << current_node_index << ".";
    ++thread_index;
    current_node_index = (current_node_index + 1) % num_nodes;
  }

  return thread_nodes;
}

}  // namespace

void TaskScheduler::init(int num_threads)
{
  thread_scoped_lock lock(mutex);
  /* Multiple cycles instances can use this task scheduler, sharing the same
   * threads, so we keep track of the number of users. */
  ++users;
  if (users != 1) {
    return;
  }
  do_exit = false;
  const bool use_auto_threads = (num_threads == 0);
  if (use_auto_threads) {
    /* Automatic number of threads. */
    num_threads = system_cpu_thread_count();
  }
  VLOG(1) << "Creating pool of " << num_threads << " threads.";

  /* Compute distribution on NUMA nodes. */
  vector<int> thread_nodes = distribute_threads_on_nodes(num_threads);

  /* Launch threads that will be waiting for work. */
  threads.resize(num_threads);
  for (int thread_index = 0; thread_index < num_threads; ++thread_index) {
    threads[thread_index] = new thread(function_bind(&TaskScheduler::thread_run, thread_index + 1),
                                       thread_nodes[thread_index]);
  }
}

void TaskScheduler::exit()
{
  thread_scoped_lock lock(mutex);
  users--;
  if (users == 0) {
    VLOG(1) << "De-initializing thread pool of task scheduler.";
    /* stop all waiting threads */
    TaskScheduler::queue_mutex.lock();
    do_exit = true;
    TaskScheduler::queue_cond.notify_all();
    TaskScheduler::queue_mutex.unlock();

    /* delete threads */
    foreach (thread *t, threads) {
      t->join();
      delete t;
    }
    threads.clear();
  }
}

void TaskScheduler::free_memory()
{
  assert(users == 0);
  threads.free_memory();
}

bool TaskScheduler::thread_wait_pop(Entry &entry)
{
  thread_scoped_lock queue_lock(queue_mutex);

  while (queue.empty() && !do_exit)
    queue_cond.wait(queue_lock);

  if (queue.empty()) {
    assert(do_exit);
    return false;
  }

  entry = queue.front();
  queue.pop_front();

  return true;
}

void TaskScheduler::thread_run(int thread_id)
{
  Entry entry;

  /* todo: test affinity/denormal mask */

  /* keep popping off tasks */
  while (thread_wait_pop(entry)) {
    /* run task */
    entry.task->run(thread_id);

    /* delete task */
    delete entry.task;

    /* notify pool task was done */
    entry.pool->num_decrease(1);
  }
}

void TaskScheduler::push(Entry &entry, bool front)
{
  entry.pool->num_increase();

  /* add entry to queue */
  TaskScheduler::queue_mutex.lock();
  if (front)
    TaskScheduler::queue.push_front(entry);
  else
    TaskScheduler::queue.push_back(entry);

  TaskScheduler::queue_cond.notify_one();
  TaskScheduler::queue_mutex.unlock();
}

void TaskScheduler::clear(TaskPool *pool)
{
  thread_scoped_lock queue_lock(TaskScheduler::queue_mutex);

  /* erase all tasks from this pool from the queue */
  list<Entry>::iterator it = queue.begin();
  int done = 0;

  while (it != queue.end()) {
    Entry &entry = *it;

    if (entry.pool == pool) {
      done++;
      delete entry.task;

      it = queue.erase(it);
    }
    else
      it++;
  }

  queue_lock.unlock();

  /* notify done */
  pool->num_decrease(done);
}

/* Dedicated Task Pool */

DedicatedTaskPool::DedicatedTaskPool()
{
  do_cancel = false;
  do_exit = false;
  num = 0;

  worker_thread = new thread(function_bind(&DedicatedTaskPool::thread_run, this));
}

DedicatedTaskPool::~DedicatedTaskPool()
{
  stop();
  worker_thread->join();
  delete worker_thread;
}

void DedicatedTaskPool::push(Task *task, bool front)
{
  num_increase();

  /* add task to queue */
  queue_mutex.lock();
  if (front)
    queue.push_front(task);
  else
    queue.push_back(task);

  queue_cond.notify_one();
  queue_mutex.unlock();
}

void DedicatedTaskPool::push(const TaskRunFunction &run, bool front)
{
  push(new Task(run), front);
}

void DedicatedTaskPool::wait()
{
  thread_scoped_lock num_lock(num_mutex);

  while (num)
    num_cond.wait(num_lock);
}

void DedicatedTaskPool::cancel()
{
  do_cancel = true;

  clear();
  wait();

  do_cancel = false;
}

void DedicatedTaskPool::stop()
{
  clear();

  do_exit = true;
  queue_cond.notify_all();

  wait();

  assert(num == 0);
}

bool DedicatedTaskPool::canceled()
{
  return do_cancel;
}

void DedicatedTaskPool::num_decrease(int done)
{
  thread_scoped_lock num_lock(num_mutex);
  num -= done;

  assert(num >= 0);
  if (num == 0)
    num_cond.notify_all();
}

void DedicatedTaskPool::num_increase()
{
  thread_scoped_lock num_lock(num_mutex);
  num++;
  num_cond.notify_all();
}

bool DedicatedTaskPool::thread_wait_pop(Task *&task)
{
  thread_scoped_lock queue_lock(queue_mutex);

  while (queue.empty() && !do_exit)
    queue_cond.wait(queue_lock);

  if (queue.empty()) {
    assert(do_exit);
    return false;
  }

  task = queue.front();
  queue.pop_front();

  return true;
}

void DedicatedTaskPool::thread_run()
{
  Task *task;

  /* keep popping off tasks */
  while (thread_wait_pop(task)) {
    /* run task */
    task->run(0);

    /* delete task */
    delete task;

    /* notify task was done */
    num_decrease(1);
  }
}

void DedicatedTaskPool::clear()
{
  thread_scoped_lock queue_lock(queue_mutex);

  /* erase all tasks from the queue */
  list<Task *>::iterator it = queue.begin();
  int done = 0;

  while (it != queue.end()) {
    done++;
    delete *it;

    it = queue.erase(it);
  }

  queue_lock.unlock();

  /* notify done */
  num_decrease(done);
}

string TaskPool::Summary::full_report() const
{
  string report = "";
  report += string_printf("Total time:    %f\n", time_total);
  report += string_printf("Tasks handled: %d\n", num_tasks_handled);
  return report;
}

CCL_NAMESPACE_END