Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ntl_vector3dim.h « intern « elbeem « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 38a6d2da80b3450ba142642a24d70e76e41978e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
/** \file elbeem/intern/ntl_vector3dim.h
 *  \ingroup elbeem
 */
/******************************************************************************
 *
 * El'Beem - Free Surface Fluid Simulation with the Lattice Boltzmann Method
 * Copyright 2003-2006 Nils Thuerey
 *
 * Basic vector class used everywhere, either blitz or inlined GRAPA class
 *
 *****************************************************************************/
#ifndef NTL_VECTOR3DIM_H
#define NTL_VECTOR3DIM_H

// this serves as the main include file
// for all kinds of stuff that might be required
// under windos there seem to be strange 
// errors when including the STL header too
// late...

#ifdef _MSC_VER
#define _USE_MATH_DEFINES 1
#endif

#include <iostream>
#include <map>
#include <vector>
#include <string>
#include <sstream>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#ifdef WITH_CXX_GUARDEDALLOC
#  include "MEM_guardedalloc.h"
#endif

/* absolute value */
template < class T >
inline T
ABS( T a )
{ return (0 < a) ? a : -a ; }

// hack for MSVC6.0 compiler
#ifdef _MSC_VER
#if _MSC_VER < 1300
#define for     if(false); else for
#define map     std::map
#define vector  std::vector
#define string  std::string
// use this define for MSVC6 stuff hereafter
#define USE_MSVC6FIXES
#else // _MSC_VER < 1300 , 7.0 or higher
using std::map;
using std::vector;
using std::string;
#endif
#else // not MSVC6
// for proper compilers...
using std::map;
using std::vector;
using std::string;
#endif // MSVC6

#ifdef __APPLE_CC__
// apple
#else
#ifdef WIN32

// windows values missing, see below
#ifndef snprintf
#define snprintf _snprintf
#endif

#ifdef _MSC_VER
#if _MSC_VER >= 1300
#include <float.h>
#endif
#endif

#else // WIN32

// floating point limits for linux,*bsd etc...
#include <float.h>

#endif // WIN32
#endif // __APPLE_CC__

// windos, hardcoded limits for now...
// for e.g. MSVC compiler...
// some of these defines can be needed
// for linux systems as well (e.g. FLT_MAX)
#ifndef __FLT_MAX__
#	ifdef FLT_MAX  // try to use it instead
#		define __FLT_MAX__ FLT_MAX
#	else // FLT_MAX
#		define __FLT_MAX__ 3.402823466e+38f
#	endif // FLT_MAX
#endif // __FLT_MAX__
#ifndef __DBL_MAX__
#	ifdef DBL_MAX // try to use it instead
#		define __DBL_MAX__ DBL_MAX
#	else // DBL_MAX
#		define __DBL_MAX__ 1.7976931348623158e+308
#	endif // DBL_MAX
#endif // __DBL_MAX__

#ifndef M_PI
#define M_PI 3.1415926536
#endif

#ifndef M_E
#define M_E  2.7182818284
#endif

// make sure elbeem plugin def is valid
#if ELBEEM_BLENDER==1
#ifndef ELBEEM_PLUGIN
#define ELBEEM_PLUGIN 1
#endif // !ELBEEM_PLUGIN
#endif // ELBEEM_BLENDER==1

// make sure GUI support is disabled for plugin use
#if ELBEEM_PLUGIN==1
#ifndef NOGUI
#define NOGUI 1
#endif // !NOGUI
#endif // ELBEEM_PLUGIN==1


// basic inlined vector class
template<class Scalar>
class ntlVector3Dim
{
public:
  // Constructor
  inline ntlVector3Dim(void );
  // Copy-Constructor
  inline ntlVector3Dim(const ntlVector3Dim<Scalar> &v );
  inline ntlVector3Dim(const float *);
  inline ntlVector3Dim(const double *);
  // construct a vector from one Scalar
  inline ntlVector3Dim(Scalar);
  // construct a vector from three Scalars
  inline ntlVector3Dim(Scalar, Scalar, Scalar);

	// get address of array for OpenGL
	Scalar *getAddress() { return value; }

  // Assignment operator
  inline const ntlVector3Dim<Scalar>& operator=  (const ntlVector3Dim<Scalar>& v);
  // Assignment operator
  inline const ntlVector3Dim<Scalar>& operator=  (Scalar s);
  // Assign and add operator
  inline const ntlVector3Dim<Scalar>& operator+= (const ntlVector3Dim<Scalar>& v);
  // Assign and add operator
  inline const ntlVector3Dim<Scalar>& operator+= (Scalar s);
  // Assign and sub operator
  inline const ntlVector3Dim<Scalar>& operator-= (const ntlVector3Dim<Scalar>& v);
  // Assign and sub operator
  inline const ntlVector3Dim<Scalar>& operator-= (Scalar s);
  // Assign and mult operator
  inline const ntlVector3Dim<Scalar>& operator*= (const ntlVector3Dim<Scalar>& v);
  // Assign and mult operator
  inline const ntlVector3Dim<Scalar>& operator*= (Scalar s);
  // Assign and div operator
  inline const ntlVector3Dim<Scalar>& operator/= (const ntlVector3Dim<Scalar>& v);
  // Assign and div operator
  inline const ntlVector3Dim<Scalar>& operator/= (Scalar s);


  // unary operator
  inline ntlVector3Dim<Scalar> operator- () const;

  // binary operator add
  inline ntlVector3Dim<Scalar> operator+ (const ntlVector3Dim<Scalar>&) const;
  // binary operator add
  inline ntlVector3Dim<Scalar> operator+ (Scalar) const;
  // binary operator sub
  inline ntlVector3Dim<Scalar> operator- (const ntlVector3Dim<Scalar>&) const;
  // binary operator sub
  inline ntlVector3Dim<Scalar> operator- (Scalar) const;
  // binary operator mult
  inline ntlVector3Dim<Scalar> operator* (const ntlVector3Dim<Scalar>&) const;
  // binary operator mult
  inline ntlVector3Dim<Scalar> operator* (Scalar) const;
  // binary operator div
  inline ntlVector3Dim<Scalar> operator/ (const ntlVector3Dim<Scalar>&) const;
  // binary operator div
  inline ntlVector3Dim<Scalar> operator/ (Scalar) const;

  // Projection normal to a vector
  inline ntlVector3Dim<Scalar>	  getOrthogonalntlVector3Dim() const;
  // Project into a plane
  inline const ntlVector3Dim<Scalar>& projectNormalTo(const ntlVector3Dim<Scalar> &v);
  
  // minimize
  inline const ntlVector3Dim<Scalar> &minimize(const ntlVector3Dim<Scalar> &);
  // maximize
  inline const ntlVector3Dim<Scalar> &maximize(const ntlVector3Dim<Scalar> &);
  
  // access operator
  inline Scalar& operator[](unsigned int i);
  // access operator
  inline const Scalar& operator[](unsigned int i) const;

protected:
  
private:
  Scalar value[3];  //< Storage of vector values

private:
#ifdef WITH_CXX_GUARDEDALLOC
	MEM_CXX_CLASS_ALLOC_FUNCS("ELBEEM:ntlVector3Dim")
#endif
};




//------------------------------------------------------------------------------
// STREAM FUNCTIONS
//------------------------------------------------------------------------------



//! global string for formatting vector output in utilities.cpp
extern const char *globVecFormatStr;

/*************************************************************************
  Outputs the object in human readable form using the format
  [x,y,z]
  */
template<class Scalar>
std::ostream&
operator<<( std::ostream& os, const ntlVector3Dim<Scalar>& i )
{
	char buf[256];
	snprintf(buf,256,globVecFormatStr,i[0],i[1],i[2]);
	os << string(buf); 
  //os << '[' << i[0] << ", " << i[1] << ", " << i[2] << ']';
  return os;
}



/*************************************************************************
  Reads the contents of the object from a stream using the same format
  as the output operator.
  */
template<class Scalar>
std::istream&
operator>>( std::istream& is, ntlVector3Dim<Scalar>& i )
{
  char c;
  char dummy[3];
  is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> c;
  return is;
}


//------------------------------------------------------------------------------
// VECTOR inline FUNCTIONS
//------------------------------------------------------------------------------



/*************************************************************************
  Constructor.
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim( void )
{
  value[0] = value[1] = value[2] = 0;
}



/*************************************************************************
  Copy-Constructor.
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim( const ntlVector3Dim<Scalar> &v )
{
  value[0] = v.value[0];
  value[1] = v.value[1];
  value[2] = v.value[2];
}
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim( const float *fvalue)
{
  value[0] = (Scalar)fvalue[0];
  value[1] = (Scalar)fvalue[1];
  value[2] = (Scalar)fvalue[2];
}
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim( const double *fvalue)
{
  value[0] = (Scalar)fvalue[0];
  value[1] = (Scalar)fvalue[1];
  value[2] = (Scalar)fvalue[2];
}



/*************************************************************************
  Constructor for a vector from a single Scalar. All components of
  the vector get the same value.
  \param s The value to set
  \return The new vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim(Scalar s )
{
  value[0]= s;
  value[1]= s;
  value[2]= s;
}


/*************************************************************************
  Constructor for a vector from three Scalars.
  \param s1 The value for the first vector component
  \param s2 The value for the second vector component
  \param s3 The value for the third vector component
  \return The new vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>::ntlVector3Dim(Scalar s1, Scalar s2, Scalar s3)
{
  value[0]= s1;
  value[1]= s2;
  value[2]= s3;
}


/*************************************************************************
  Compute the vector product of two 3D vectors
  \param v Second vector to compute the product with
  \return A new vector with the product values
  */
/*template<class Scalar>
inline ntlVector3Dim<Scalar> 
ntlVector3Dim<Scalar>::operator^( const ntlVector3Dim<Scalar> &v ) const
{
  return ntlVector3Dim<Scalar>(value[1]*v.value[2] - value[2]*v.value[1],
			value[2]*v.value[0] - value[0]*v.value[2],
			value[0]*v.value[1] - value[1]*v.value[0]);
}*/


/*************************************************************************
  Copy a ntlVector3Dim componentwise.
  \param v vector with values to be copied
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator=( const ntlVector3Dim<Scalar> &v )
{
  value[0] = v.value[0];
  value[1] = v.value[1];
  value[2] = v.value[2];  
  return *this;
}


/*************************************************************************
  Copy a Scalar to each component.
  \param s The value to copy
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator=(Scalar s)
{
  value[0] = s;
  value[1] = s;
  value[2] = s;  
  return *this;
}


/*************************************************************************
  Add another ntlVector3Dim componentwise.
  \param v vector with values to be added
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator+=( const ntlVector3Dim<Scalar> &v )
{
  value[0] += v.value[0];
  value[1] += v.value[1];
  value[2] += v.value[2];  
  return *this;
}


/*************************************************************************
  Add a Scalar value to each component.
  \param s Value to add
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator+=(Scalar s)
{
  value[0] += s;
  value[1] += s;
  value[2] += s;  
  return *this;
}


/*************************************************************************
  Subtract another vector componentwise.
  \param v vector of values to subtract
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator-=( const ntlVector3Dim<Scalar> &v )
{
  value[0] -= v.value[0];
  value[1] -= v.value[1];
  value[2] -= v.value[2];  
  return *this;
}


/*************************************************************************
  Subtract a Scalar value from each component.
  \param s Value to subtract
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator-=(Scalar s)
{
  value[0]-= s;
  value[1]-= s;
  value[2]-= s;  
  return *this;
}


/*************************************************************************
  Multiply with another vector componentwise.
  \param v vector of values to multiply with
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator*=( const ntlVector3Dim<Scalar> &v )
{
  value[0] *= v.value[0];
  value[1] *= v.value[1];
  value[2] *= v.value[2];  
  return *this;
}


/*************************************************************************
  Multiply each component with a Scalar value.
  \param s Value to multiply with
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator*=(Scalar s)
{
  value[0] *= s;
  value[1] *= s;
  value[2] *= s;  
  return *this;
}


/*************************************************************************
  Divide by another ntlVector3Dim componentwise.
  \param v vector of values to divide by
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator/=( const ntlVector3Dim<Scalar> &v )
{
  value[0] /= v.value[0];
  value[1] /= v.value[1];
  value[2] /= v.value[2];  
  return *this;
}


/*************************************************************************
  Divide each component by a Scalar value.
  \param s Value to divide by
  \return Reference to self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::operator/=(Scalar s)
{
  value[0] /= s;
  value[1] /= s;
  value[2] /= s;
  return *this;
}


//------------------------------------------------------------------------------
// unary operators
//------------------------------------------------------------------------------


/*************************************************************************
  Build componentwise the negative this vector.
  \return The new (negative) vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator-() const
{
  return ntlVector3Dim<Scalar>(-value[0], -value[1], -value[2]);
}



//------------------------------------------------------------------------------
// binary operators
//------------------------------------------------------------------------------


/*************************************************************************
  Build a vector with another vector added componentwise.
  \param v The second vector to add
  \return The sum vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator+( const ntlVector3Dim<Scalar> &v ) const
{
  return ntlVector3Dim<Scalar>(value[0]+v.value[0],
			value[1]+v.value[1],
			value[2]+v.value[2]);
}


/*************************************************************************
  Build a vector with a Scalar value added to each component.
  \param s The Scalar value to add
  \return The sum vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator+(Scalar s) const
{
  return ntlVector3Dim<Scalar>(value[0]+s,
			value[1]+s,
			value[2]+s);
}


/*************************************************************************
  Build a vector with another vector subtracted componentwise.
  \param v The second vector to subtract
  \return The difference vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator-( const ntlVector3Dim<Scalar> &v ) const
{
  return ntlVector3Dim<Scalar>(value[0]-v.value[0],
			value[1]-v.value[1],
			value[2]-v.value[2]);
}


/*************************************************************************
  Build a vector with a Scalar value subtracted componentwise.
  \param s The Scalar value to subtract
  \return The difference vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator-(Scalar s ) const
{
  return ntlVector3Dim<Scalar>(value[0]-s,
			value[1]-s,
			value[2]-s);
}



/*************************************************************************
  Build a vector with another vector multiplied by componentwise.
  \param v The second vector to muliply with
  \return The product vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator*( const ntlVector3Dim<Scalar>& v) const
{
  return ntlVector3Dim<Scalar>(value[0]*v.value[0],
			value[1]*v.value[1],
			value[2]*v.value[2]);
}


/*************************************************************************
  Build a ntlVector3Dim with a Scalar value multiplied to each component.
  \param s The Scalar value to multiply with
  \return The product vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator*(Scalar s) const
{
  return ntlVector3Dim<Scalar>(value[0]*s, value[1]*s, value[2]*s);
}


/*************************************************************************
  Build a vector divided componentwise by another vector.
  \param v The second vector to divide by
  \return The ratio vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator/(const ntlVector3Dim<Scalar>& v) const
{
  return ntlVector3Dim<Scalar>(value[0]/v.value[0],
			value[1]/v.value[1],
			value[2]/v.value[2]);
}



/*************************************************************************
  Build a vector divided componentwise by a Scalar value.
  \param s The Scalar value to divide by
  \return The ratio vector
  */
template<class Scalar>
inline ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::operator/(Scalar s) const
{
  return ntlVector3Dim<Scalar>(value[0]/s,
			value[1]/s,
			value[2]/s);
}





/*************************************************************************
  Get a particular component of the vector.
  \param i Number of Scalar to get
  \return Reference to the component
  */
template<class Scalar>
inline Scalar&
ntlVector3Dim<Scalar>::operator[]( unsigned int i )
{
  return value[i];
}


/*************************************************************************
  Get a particular component of a constant vector.
  \param i Number of Scalar to get
  \return Reference to the component
  */
template<class Scalar>
inline const Scalar&
ntlVector3Dim<Scalar>::operator[]( unsigned int i ) const
{
  return value[i];
}



//------------------------------------------------------------------------------
// BLITZ compatibility functions
//------------------------------------------------------------------------------



/*************************************************************************
  Compute the scalar product with another vector.
  \param v The second vector to work with
  \return The value of the scalar product
  */
template<class Scalar>
inline Scalar dot(const ntlVector3Dim<Scalar> &t, const ntlVector3Dim<Scalar> &v )
{
  //return t.value[0]*v.value[0] + t.value[1]*v.value[1] + t.value[2]*v.value[2];
  return ((t[0]*v[0]) + (t[1]*v[1]) + (t[2]*v[2]));
}


/*************************************************************************
  Calculate the cross product of this and another vector
 */
template<class Scalar>
inline ntlVector3Dim<Scalar> cross(const ntlVector3Dim<Scalar> &t, const ntlVector3Dim<Scalar> &v)
{
  ntlVector3Dim<Scalar> cp( 
			((t[1]*v[2]) - (t[2]*v[1])),
		  ((t[2]*v[0]) - (t[0]*v[2])),
		  ((t[0]*v[1]) - (t[1]*v[0])) );
  return cp;
}




/*************************************************************************
  Compute a vector that is orthonormal to self. Nothing else can be assumed
  for the direction of the new vector.
  \return The orthonormal vector
  */
template<class Scalar>
ntlVector3Dim<Scalar>
ntlVector3Dim<Scalar>::getOrthogonalntlVector3Dim() const
{
  // Determine the  component with max. absolute value
  int max= (fabs(value[0]) > fabs(value[1])) ? 0 : 1;
  max= (fabs(value[max]) > fabs(value[2])) ? max : 2;

  /*************************************************************************
    Choose another axis than the one with max. component and project
    orthogonal to self
    */
  ntlVector3Dim<Scalar> vec(0.0);
  vec[(max+1)%3]= 1;
  vec.normalize();
  vec.projectNormalTo(this->getNormalized());
  return vec;
}


/*************************************************************************
  Projects the vector into a plane normal to the given vector, which must
  have unit length. Self is modified.
  \param v The plane normal
  \return The projected vector
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar>&
ntlVector3Dim<Scalar>::projectNormalTo(const ntlVector3Dim<Scalar> &v)
{
  Scalar sprod = dot(*this,v);
  value[0]= value[0] - v.value[0] * sprod;
  value[1]= value[1] - v.value[1] * sprod;
  value[2]= value[2] - v.value[2] * sprod;  
  return *this;
}



//------------------------------------------------------------------------------
// Other helper functions
//------------------------------------------------------------------------------



/*************************************************************************
  Minimize the vector, i.e. set each entry of the vector to the minimum
  of both values.
  \param pnt The second vector to compare with
  \return Reference to the modified self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar> &
ntlVector3Dim<Scalar>::minimize(const ntlVector3Dim<Scalar> &pnt)
{
  for (unsigned int i = 0; i < 3; i++)
    value[i] = MIN(value[i],pnt[i]);
  return *this;
}



/*************************************************************************
  Maximize the vector, i.e. set each entry of the vector to the maximum
  of both values.
  \param pnt The second vector to compare with
  \return Reference to the modified self
  */
template<class Scalar>
inline const ntlVector3Dim<Scalar> &
ntlVector3Dim<Scalar>::maximize(const ntlVector3Dim<Scalar> &pnt)
{
  for (unsigned int i = 0; i < 3; i++)
    value[i] = MAX(value[i],pnt[i]);
  return *this;
}




// ----

// a 3D vector with double precision
typedef ntlVector3Dim<double>  ntlVec3d; 

// a 3D vector with single precision
typedef ntlVector3Dim<float>   ntlVec3f; 

// a 3D integer vector
typedef ntlVector3Dim<int>     ntlVec3i; 

// Color uses single precision fp values
typedef ntlVec3f ntlColor;

/* convert a float to double vector */
template<class T> inline ntlVec3d vec2D(T v) { return ntlVec3d(v[0],v[1],v[2]); }
template<class T> inline ntlVec3f vec2F(T v) { return ntlVec3f(v[0],v[1],v[2]); }
template<class T> inline ntlColor vec2Col(T v) { return ntlColor(v[0],v[1],v[2]); }



/************************************************************************/
// graphics vector typing


// use which fp-precision for raytracing? 1=float, 2=double

/* VECTOR_EPSILON is the minimal vector length
   In order to be able to discriminate floating point values near zero, and
   to be sure not to fail a comparison because of roundoff errors, use this
   value as a threshold.  */

// use which fp-precision for graphics? 1=float, 2=double
#ifdef PRECISION_GFX_SINGLE
#define GFX_PRECISION 1
#else
#ifdef PRECISION_GFX_DOUBLE
#define GFX_PRECISION 2
#else
// standard precision for graphics 
#ifndef GFX_PRECISION
#define GFX_PRECISION 1
#endif
#endif
#endif
		
#if GFX_PRECISION==1
typedef float gfxReal;
#define GFX_REAL_MAX __FLT_MAX__
//#define vecF2Gfx(x) (x)
//#define vecGfx2F(x) (x)
//#define vecD2Gfx(x) vecD2F(x)
//#define vecGfx2D(x) vecF2D(x)
#define VECTOR_EPSILON (1e-5f)
#else
typedef double gfxReal;
#define GFX_REAL_MAX __DBL_MAX__
//#define vecF2Gfx(x) vecD2F(x)
//#define vecGfx2F(x) vecF2D(x)
//#define vecD2Gfx(x) (x)
//#define vecGfx2D(x) (x)
#define VECTOR_EPSILON (1e-10)
#endif

/* fixed double prec. type, for epxlicitly double values */
typedef double gfxDouble;

// a 3D vector for graphics output, typically float?
typedef ntlVector3Dim<gfxReal>  ntlVec3Gfx; 

template<class T> inline ntlVec3Gfx vec2G(T v) { return ntlVec3Gfx(v[0],v[1],v[2]); }

/* get minimal vector length value that can be discriminated.  */
//inline double getVecEpsilon() { return (double)VECTOR_EPSILON; }
inline gfxReal getVecEpsilon() { return (gfxReal)VECTOR_EPSILON; }

#define HAVE_GFXTYPES




/************************************************************************/
// HELPER FUNCTIONS, independent of implementation
/************************************************************************/

#define VECTOR_TYPE ntlVector3Dim<Scalar>


/*************************************************************************
  Compute the length (norm) of the vector.
  \return The value of the norm
  */
template<class Scalar>
inline Scalar norm( const VECTOR_TYPE &v)
{
  Scalar l = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
  return (fabs(l-1.) < VECTOR_EPSILON*VECTOR_EPSILON) ? 1. : sqrt(l);
}


/*************************************************************************
  Same as getNorm but doesnt sqrt  
  */
template<class Scalar>
inline Scalar normNoSqrt( const VECTOR_TYPE &v)
{
  return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}


/*************************************************************************
  Compute a normalized vector based on this vector.
  \return The new normalized vector
  */
template<class Scalar>
inline VECTOR_TYPE getNormalized( const VECTOR_TYPE &v)
{
  Scalar l = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
  if (fabs(l-1.) < VECTOR_EPSILON*VECTOR_EPSILON)
    return v; /* normalized "enough"... */
  else if (l > VECTOR_EPSILON*VECTOR_EPSILON)
  {
    Scalar fac = 1./sqrt(l);
    return VECTOR_TYPE(v[0]*fac, v[1]*fac, v[2]*fac);
  }
  else
    return VECTOR_TYPE((Scalar)0);
}


/*************************************************************************
  Compute the norm of the vector and normalize it.
  \return The value of the norm
  */
template<class Scalar>
inline Scalar normalize( VECTOR_TYPE &v) 
{
  Scalar norm;
  Scalar l = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];  
  if (fabs(l-1.) < VECTOR_EPSILON*VECTOR_EPSILON) {
    norm = 1.;
	} else if (l > VECTOR_EPSILON*VECTOR_EPSILON) {
    norm = sqrt(l);
    Scalar fac = 1./norm;
    v[0] *= fac;
    v[1] *= fac;
    v[2] *= fac; 
	} else {
    v[0]= v[1]= v[2]= 0;
    norm = 0.;
  }
  return (Scalar)norm;
}


/*************************************************************************
  Compute a vector, that is self (as an incoming
  vector) reflected at a surface with a distinct normal vector. Note
  that the normal is reversed, if the scalar product with it is positive.
  \param n The surface normal
  \return The new reflected vector
  */
template<class Scalar>
inline VECTOR_TYPE reflectVector(const VECTOR_TYPE &t, const VECTOR_TYPE &n) 
{
  VECTOR_TYPE nn= (dot(t, n) > 0.0) ? (n*-1.0) : n;
  return ( t - nn * (2.0 * dot(nn, t)) );
}



/*************************************************************************
 * My own refraction calculation
 * Taken from Glassner's book, section 5.2 (Heckberts method)
 */
template<class Scalar>
inline VECTOR_TYPE refractVector(const VECTOR_TYPE &t, const VECTOR_TYPE &normal, Scalar nt, Scalar nair, int &refRefl) 
{
	Scalar eta = nair / nt;
	Scalar n = -dot(t, normal);
	Scalar tt = 1.0 + eta*eta* (n*n-1.0);
	if(tt<0.0) {
		// we have total reflection!
		refRefl = 1;
	} else {
		// normal reflection
		tt = eta*n - sqrt(tt);
		return( t*eta + normal*tt );
	}
	return t;
}
	/*double eta = nair / nt;
	double n = -((*this) | normal);
	double t = 1.0 + eta*eta* (n*n-1.0);
	if(t<0.0) {
		// we have total reflection!
		refRefl = 1;
	} else {
		// normal reflection
		t = eta*n - sqrt(t);
		return( (*this)*eta + normal*t );
	}
	return (*this);*/


/*************************************************************************
  Test two ntlVector3Dims for equality based on the equality of their
  values within a small threshold.
  \param c The second vector to compare
  \return TRUE if both are equal
  \sa getEpsilon()
  */
template<class Scalar>
inline bool equal(const VECTOR_TYPE &v, const VECTOR_TYPE &c)
{
  return (ABS(v[0]-c[0]) + 
	  ABS(v[1]-c[1]) + 
	  ABS(v[2]-c[2]) < VECTOR_EPSILON);
}


/*************************************************************************
 * Assume this vector is an RGB color, and convert it to HSV
 */
template<class Scalar>
inline void rgbToHsv( VECTOR_TYPE &V )
{
	Scalar h=0,s=0,v=0;
	Scalar maxrgb, minrgb, delta;
	// convert to hsv...
	maxrgb = V[0];
	int maxindex = 1;
	if(V[2] > maxrgb){ maxrgb = V[2]; maxindex = 2; }
	if(V[1] > maxrgb){ maxrgb = V[1]; maxindex = 3; }
	minrgb = V[0];
	if(V[2] < minrgb) minrgb = V[2];
	if(V[1] < minrgb) minrgb = V[1];

	v = maxrgb;
	delta = maxrgb-minrgb;

	if(maxrgb > 0) s = delta/maxrgb;
	else s = 0;

	h = 0;
	if(s > 0) {
		if(maxindex == 1) {
			h = ((V[1]-V[2])/delta)  + 0.0; }
		if(maxindex == 2) {
			h = ((V[2]-V[0])/delta)  + 2.0; }
		if(maxindex == 3) {
			h = ((V[0]-V[1])/delta)  + 4.0; }
		h *= 60.0;
		if(h < 0.0) h += 360.0;
	}

	V[0] = h;
	V[1] = s;
	V[2] = v;
}

/*************************************************************************
 * Assume this vector is HSV and convert to RGB
 */
template<class Scalar>
inline void hsvToRgb( VECTOR_TYPE &V )
{
	Scalar h = V[0], s = V[1], v = V[2];
	Scalar r=0,g=0,b=0;
	Scalar p,q,t, fracth;
	int floorh;
	// ...and back to rgb
	if(s == 0) {
		r = g = b = v; }
	else {
		h /= 60.0;
		floorh = (int)h;
		fracth = h - floorh;
		p = v * (1.0 - s);
		q = v * (1.0 - (s * fracth));
		t = v * (1.0 - (s * (1.0 - fracth)));
		switch (floorh) {
		case 0: r = v; g = t; b = p; break;
		case 1: r = q; g = v; b = p; break;
		case 2: r = p; g = v; b = t; break;
		case 3: r = p; g = q; b = v; break;
		case 4: r = t; g = p; b = v; break;
		case 5: r = v; g = p; b = q; break;
		}
	}

	V[0] = r;
	V[1] = g;
	V[2] = b;
}




#endif /* NTL_VECTOR3DIM_HH */